## Achieved Trigonometry Practice #2

1. Some students want to make a Jamaican flag to wave at a reggae concert. The flag looks like this:

They decide their flag should be 1.8 m wide and 1.2 m high.

How long are the diagonal stripes on their flag?

2. There is a ramp up to the concert stage. The ramp is made of 5 metres of board and is 2 metres high.

| 5 m ramp | 2 m high stage |
|----------|----------------|
|          |                |

How far back does the ramp start from the stage?

3. The wiring to the speakers has a 4.5 metre stretch which goes over a wall. The wall is 2.5 metres high.

What angle does the wire form with the ground?



 The wiring coming down the other side makes an angle of 40° with the wall. The wall is 2.5 metres high.

How long is the wire from the top of the wall to the ground?







## Answers: Achieved Trigonometry Practice #2

1. Some students want to make a Jamaican flag to wave at a reggae concert. The flag looks like this:

They decide their flag should be 1.8 m wide and 1.2 m high.

How long are the diagonal stripes on their flag?

Long side, so we use:  $h^2 = a^2 + b^2$  $h^2 = 1.8^2 + 1.2^2 = 4.68$ .  $h = \sqrt{4.68} = 2.16 \text{ m}$ 

2. There is a ramp up to the concert stage. The ramp is made of 5 metres of board and is 2 metres high.





How far back does the ramp start from the stage?

Short side, so we use the form:  $a^2 = h^2 - b^2$ 

- $a^2 = 5^2 2^2 = 21.$  $a = \sqrt{21} = 4.58 \text{ m}$
- 3. The wiring to the speakers has a 4.5 metre stretch which goes over a wall. The wall is 2.5 metres high.

What angle does the wire form with the ground?

There is an angle, so we use  ${}_{S}^{O}{}_{H} {}_{C}^{A}{}_{H} {}_{T}^{O}{}_{A}$ . We have the H and O, so we use  ${}_{S}^{O}{}_{H}$ .  $\theta = Sin^{-1} (O \div H) = Sin^{-1} (2.5 \div 4.5) = 33.74^{\circ}$ 

4. The wiring coming down the other side makes an angle of 40° with the wall. The wall is 2.5 metres high.

How long is the wire from the top of the wall to the ground?

There is an angle, so we use  ${}_{S}^{O}{}_{H} {}_{C}{}^{A}{}_{H} {}_{T}{}^{O}{}_{A}$ . We have the A and we want the H, so we use  ${}_{C}{}^{A}{}_{H}$ . H = A  $\div$  C = 2.5  $\div$  cos 50° = 3.89m





