Merit + Circle Geometry Practice #1

1. Find \measuredangle DBA (marked θ).

2. Find \measuredangle OZY (marked θ).

3. Show that ST is parallel to QR.

4. JK is a tangent intersecting at L. If \angle LPN = 2 × \angle MLK show that LM is the same length as MN

Answers: Merit+ Circle Geometry Practice #1

1. Find $\angle DBA$ (marked θ).

∡ADC = 90°	(subtended from ends of a diameter)
∡DCA = 42°	(angles in triangle add to 180°)
∡DBA = 42°	(angles subtended by the same arc are equal)

2. Find $\angle OZY$ (marked θ).

 \measuredangle YZX = 111° (opposite sides of cyclic quadrilaterals add to 180 \measuredangle OZX = \measuredangle OXZ (base angles of an isosceles triangle are equal) \measuredangle OZX = 61° (interior angles of a triangle add to 180°) \measuredangle OZY = 50° (difference between \measuredangle XZY and \measuredangle OZX)

റ

S

Ρ

R

Κ

3. Show that ST is parallel to QR.

Let $x = \measuredangle QOR = \measuredangle TOS$ (vertically opposite angles are equal) $\measuredangle OST = \measuredangle OTS$ (base angles of an isosceles triangle are equal) $\measuredangle OST = 90^\circ - \frac{1}{2}x$ (interior angles of a triangle add to 180°) $\measuredangle OQR = 90^\circ - \frac{1}{2}x$ (as for the triangle OTS above) $\measuredangle OQR$ and $\measuredangle OST$ are alternate and equal ST must be parallel to QR as alternate angles on a transversal

are equal

4. JK is a tangent intersecting at L. If \angle LPN = 2 × \angle MLK show that LM is the same length as MN

Let $2x = \measuredangle LPN$ so $x = \measuredangle MLK$ $\measuredangle MLO = 90^{\circ} - x$ (Tangent is at 90° to a radius it touches) $\measuredangle LMN = 180^{\circ} - 2x$ (opposite sides of cyclic quad add to 180°) $\measuredangle LON = 4x$ (angle subtended to centre is twice the angle to the sides and $\measuredangle LPN = 2x$) $\measuredangle ONM = 90^{\circ} - x$ (quadrilateral LMNO's interior angles add to 360N) Since $\measuredangle MNO = \measuredangle MLO$ and OL = ON (both radiuses) quadrilateral LMNO is symmetric LM and MN must be the same length if LMNO is symmetric.