L1 Algebra Trial #1

Q1. a) Give the expression $\frac{12x^3}{4x^2}$ without a denominator.

b) Find the value of K = (2x + 5)(x - 6) when x = -3.

c) Give a term equivalent to $\frac{5x-15x^2}{10x^3}$ but with the denominator as simple as possible.

- d) If $p^2 = 36x^2$, give an expression for p without a square root.
- e) Rewrite the equation $2x = \frac{k}{k+k^2}$ to give k in terms of x.
- f) The pattern 5, 11, 21, 35, ... is given by the rule $t_n = 2n^2 + 3$. Show that the difference between consecutive terms, starting at the *nth*, is 4n + 2
- Q2. a) What number plus eight is equal to three minus that same number?
 - b) Find the gradient and y-intercept of the line y = 4(x + 3) 7(x 2).
 - c) Show that 4x 7 > 9x + 4 is never true for positive numbers.
 - d) Find a solution to the equation $\frac{x+1}{x+3} = 5$.
 - e) If *b* is eight less than twice *a* and also six times *a* is *b* less than 2 what can we say about the values of *a* and *b*?
 - f) Find two numbers ten apart, so the one divided by the other is equal to one-fifth.

Q3. a) What is $3x^2 - 16x + 5$ as the product of two linear expressions?

- b) The path of a dolphin jumping above sea level is given so height, *h* is given by the formula h = -0.5(x + 3)(x 2). For what distance is the dolphin above sea level?
- c) For what values of x is $\frac{10}{2x^2 x 10}$ not able to be calculated?
- d) What number multiplied by itself is equal to 50 more than five times that number?
- e) What is the lowest possible value of *a* if $a = b^2 + 4b 32$?
- f) A rectangle has one side 6 cm longer than the other.
 If the area (in cm²) is twice its perimeter (in cm), how long is the longer side?

L1 Algebra Trial #1 : Answers

Colours indicate the **approximate** point when Achieved, Merit and Excellence are reached.

Q1. a)
$$\frac{12x^3}{4x^2} = \frac{4+3 \times x + x + x + x}{4 + x + x + x} = 3x$$

b) $(2 \times -3 + 5)(-3 - 6) = (-1)\times(-9)$ $K = 9$
c) $\frac{5x - 15x^2}{10x^3} = \frac{5x \times (1 - 3x)}{5x + 2x^2} = \frac{1}{2x^2}$
d) $p^2 = 36x^2$ so $p = \sqrt{36x^2}$ $p = \sqrt{36} \times \sqrt{x^2}$ $p = \frac{45x}{2x}$ (A without \pm)
e) $2x = \frac{k(1)}{k(1+k)}$ $2x = \frac{1}{4+x}$ $1 + k = \frac{1}{2x}$ $k = \frac{1}{2x} - 1$ or $k = \frac{1-2x}{2x}$
f) The nth term and the next are $t_n = 2n^2 + 3$ and $t_{n+1} = 2(n + 1)^2 + 3$
diff $= t_{n+1} - t_n = [2(n + 1)^2 + 3] - [2n^2 + 3] = (2n^2 + 4n + 2 + 3) - (2n^2 + 3)$
diff $= \frac{2n^2 + 4n + 2 + 3 - 2n^2 - 3}{2n^2 + 4n + 2} = \frac{1}{2} + 2n^2 - \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$