L1 Algebra Trial #3

- Q1. a) Show that for every value of x that (x 3)(x 7) and $(x 5)^2$ differ by exactly 4.
 - b) What number to the power of 5 is equal to 100,000?
 - c) The product of which two consecutive integers is the same as one and a half times the next consecutive number?
 - d) Bill works for 20 hours at a set pay rate. Sally works for 24 hours at a rate \$2 less per hour. Sally makes less money than Bill. What can we say about Bill's rate?
 - e) What solution(s) are there for: $\frac{2}{x} + x = 3$?

Three equal sized rectangular fields sharing borders as shown are made with 120m of fencing. If their total area is 400 m², what are the dimensions of the fields?

Q2. a) Show that the graph of $y = 5x^2 - 36x + 7$ has x-intercepts at x = 7 and $x = \frac{1}{5}$

b) Find
$$P = \frac{2a+b}{a+2b}$$
 if $a = 5$ and $b = -2$.

- c) Show that $x^2 8x + 16$ gives a square number for any integer x.
- d) $x^2 + ax + 10 = (x + b)(x + c)$ where b and c are integers. What values can a have?
- e) An adult ticket and a child ticket cost \$22.50 and two adult tickets and three child tickets cost \$52.50. How much is a child ticket?
- f) Write a rule for the linear pattern whose 100th, 101st and 102nd terms are
 ... 7, 11, 15, ...
- Q3. a) If $\frac{3}{4x^3y} = \frac{a}{8x}$ what is *a* equal to in terms of *x* and *y*?
 - b) Write a quadratic expression that gives values greater than zero only when x is less than 2 or more than 5.
 - c) Rewrite $\frac{3}{x} + \frac{1}{2x}$ as a single (fractional) term.
 - d) Give k in terms of y for $y = (k 2)^2$
 - e) Steve is two years older than Bill. If their ages multiplied is 440, how old is Steve?
 - f) Show that the difference between any two odd numbers is an even number.
 (*Hint: any odd number can be written as* 2n + 1, *where* n *is an integer.*)

L1 Algebra Trial #3 : Answers

Colours indicate the **approximate** point when Achieved, Merit and Excellence are reached.

- Q1. a) $(x 3)(x 7) = x^2 10x + 21$ and $(x 5)^2 = (x 5)(x 5) = \frac{x^2 10x + 25}{x^2 10x + 25}$ which are 4 different
 - b) Solve $x^5 = 100,000$ x = 10
 - c) Solve x(x + 1) = 1.5(x + 2) Doubling both sides 2x(x + 1) = 3(x + 2) $2x^2 + 2x = 3x + 6$ $2x^2 - x - 6 = 0$ (2x + 3)(x - 2) = 0x = 2 or a non-integer (-2/3) The numbers are 2 and 3
 - d) Solve 20x > 24(x 2)48/4 > x12 > x20x > 24x - 48Bill earns less than \$12 per hour
 - e) $\frac{2}{x} + x = 3$ multiply through by x gives $2 + x^2 = 3x$ (because $\frac{2x}{x} = 2$) $x^2 - 3x + 2 = 0$ (x - 1)(x - 2) = 0 x = 1 or 2
 - f) Area = b × h. Let x be the h, then b = $\frac{1}{2}(120 4x) = 60 2x$ Area = 400 = x(60 - 2x) 400 = $60x - 2x^2$ (÷ 2) $\frac{x^2 - 30x + 200 = 0}{x^2 - 10(x - 20) = 0}$ fields are 10m × 40m or 20m × 20m

Q2. a)
$$5x^2 - 36x + 7 = (5x - 1)(x - 7)$$
 so $y = 0$ if $5x - 1 = 0$ or $x - 7 = 0$
So when $x = 7$ and $x = \frac{1}{5}$

- b) $P = \frac{10 + -2}{5 + -4} = \frac{8}{1}$ P = 8
- c) $x^2 8x + 16 = (x 4)^2$ since x 4 is an integer if x is an integer, we always get an integer squared for every integer x, so a square number.
- d) b c = 10, so the possible pairs of values are 1×10 , 2×5 , -2×-5 , -1×-10 As a = b + c we see a = 7, 11, -7 or -11 (A if only 7 and 11)
- e) a + c = 22.50 so a = 22.50 c and 2a + 3c = 52.50 (need to use equations) So 2(22.50 - c) + 3c = 52.50 45 - 2c + 3c = 52.50 child = \$7.50
- f) $0.100 \times k + c = 7$ and $0.101 \times k + c = 11$, so 0 0 gives k = 4 (the multiplier) Solve $100 \times 4 + c = 7$, c = -393 (the constant) Rule is $t_n = 4n - 393$
- Q3. a) $\frac{3}{4x^3y} = \frac{a}{8x}$ so $a = \frac{3 \times 8x}{4x^3y} = \frac{4x \times 6}{4x \times x^2y}$ $a = \frac{6}{x^2y}$
 - b) (x-2)(x-5) or $x^2 7x + 10$ as a parabola with intercepts at x = 2 and 5
 - c) $\frac{3}{x} + \frac{1}{2x} = \frac{6}{2x} + \frac{1}{2x} = \frac{7}{2x}$
 - d) $y = (k-2)^2 \pm \sqrt{y} = k+2$ $k = 2 \pm \sqrt{y}$ or $k = \pm \sqrt{y} + 2$ (A if no \pm)
 - e) $B \times S = 440$ so (S 2)S = 440 $S^2 2S 440 = 0$ (S 22)(S + 20) = 0**S = 22 or -20**. Negative age makes no sense Steve is 22
 - f) Difference of two odd numbers = (2n + 1) (2m + 1) where n and m integers difference is $2n + 1 - 2m - 1 = \frac{2n - 2m}{2m} = \frac{2(n - m)}{2 \times any}$ As n and m are integers, n - m is an integer, $2 \times any$ integer must be even