L2 Probability Practice #6

- 1. A student marks both of two six-sided dice with the numbers 1, 1, 2, 2, 2, 3. He then rolls the two dice and adds their score.
 - a) What is the probability that the result is odd?
 - b) What is the probability that the total is five?
 - c) If the total is four, what is the probability one of the dice is a "3"?
- 2. A bag contains 80 marbles, which students can earn a chance to draw from.
 - 20 small red ones.
 - 7 large red ones.
 - 25 small blue ones
 - 8 large blue ones.

If a large one is selected (at random) the student wins a small prize.

- a) What is probability that if two randomly selected marbles are drawn at the same time that they will both be large?
- b) What is the probability a random marble is large, given that it is red?
- c) If two marbles are drawn, and one of them is large, what is the probability that the other is large too?
- 3. A student notices that the bells to mark the start and ends of periods at his school are not very accurate. He accurately records the length of classes over a couple of weeks.

The mean period length is 55.5 minutes, with a standard deviation of 0.8 minutes.

- a) What is the probability a period will last more than 56 minutes?
- b) Calculate the time the longest 10% of classes will last.

		 	 	 	 	 _
c) Sketch the distribution:						
	-					 _
						 _
A A A 2013						
2013						
MAN ²⁰¹³	_		 			_
	-		-			

Answers: L2 Probability Practice #6

- 1. We could do this with probability trees, but the quicker way is to do it by counting results, which we know must be = $6 \times 6 = 36$, which is a good check. Distinguish the individual results: 1_{A1} , 1_{A2} , 2_{A1} , 2_{A2} , 2_{A2} , 3_A and 1_{B1} , 1_{B2} , 2_{B1} , 2_{B2} , 2_{B3} , 3_B
 - a) Can only be done by a 2 plus either 1 or 3. P(2 then 1/3) = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ and P(1 or 3 then 2) = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$. So probability of odd total = **0.5**
 - b) There are 36 possibilities, all equally likely, of which 6 end up adding to five ways are = $2_{A1} + 3_{B1}$; $2_{A2} + 3_{B2}$; $2_{A2} + 3_{B3}$; $3_A + 2_{B1}$; $3_A + 2_{B2}$; $3_A + 2_{B3}$ so P(total = 5) = 6/36 = **0.1667**
 - c) There are 13 ways to get a total of 4. $(1_{A1}+3_B; 1_{A2}+3_B; 3_A+1_{B1}; 3_A+1_{B2}; 2_{A1}+2_{B1}; 2_{A1}+2_{B2}; 2_{A1}+2_{B1}; 2_{A2}+2_{B2}; 2_{A2}+2_{B3}; 2_{A3}+2_{B1}; 2_{A3}+2_{B2}; 2_{A3}+2_{B3})$. Of those, four have a 3 in them. P(a 3 if total = 4) = 4/13 = **0.307**
- 2.
- a) $P(2 \text{ large}) = P(1^{\text{st}} \text{ is large}) \times P(2^{\text{nd}} \text{ is large}) = 15/80 \times 14/79 = 0.033$
- b) There are 27 red, of which 7 are large. P(large | red) = 7/27 = 0.259
- c) Ignore colour, as it is not relevant. There are 45 small and 15 large. Use a tree. 60×59 equally likely options. Of these $45 \times 44 = 1980$ are small then small, $45 \times 15 = 675$ are small then large and $15 \times 45 = 675$ are large then small and $15 \times 14 = 210$ are both large. Take 2L option out of LL, SL and LS options. P(both large if one is) = $210 \div (210 + 675 + 765) = 0.094$
- 3.
- a) Graphics: Ncd: lower =56, upper = 999999, σ = 55.5, μ = 0.8 P(t > 56) = 0.266
- b) Graphics: InvN: tail =right, area = 0.1, σ = 55.5, μ = 0.8 (With old Graphics: InvN: tail =left, area = 0.9 and then 0.75, σ = 55.5, μ = 0.8) Longest 10% = **over 56.5 minutes**
- c) The sketch must be symmetrical. The peak must be at 55.5 (but can be any height). The curve must be bottoming out more or less around $\pm 2\sigma$ (53.9 and 57.1) and must be basically zero by $\pm 4\sigma$ (52.3 and 58.7)

