L2 Simultaneous Equations Practice #2

Solve the following pairs of Simultaneous Equations

Warm Up

- 1. $y = \frac{1}{2}x + 4$ and y = 5x 2
- 2. 2x + y = 4 and 5x y = 3

Achieved

- 3. y = x + 4 and $x^2 + y^2 = 58$
- 4. $y = x^2 + 5x 1$ and 4x y + 1 = 0

Merit

- 5. $(x + 2)^2 + y^2 = 400$ and 4x 3y + 8 = 0
- 6. (a-3)(b+1) = 1 and a-b = 4

Excellence

- 7. $(x + 1)^2 + (y + 2)^2 = 100$ and $y = \frac{x + 37}{7}$
- 8. Find k so that y = 5 x is a tangent to $y = x^2 + kx + 14$

Answers: L2 Simultaneous Equations Practice #2

1.
$$y = \frac{1}{2}x + 4$$
 and $y = 5x - 2$
make $y = y: \frac{1}{2}x + 4 = 5x - 2$
answer $= \left(\frac{4}{3}, \frac{14}{3}\right)$
2. $2x + y = 4$ and $5x - y = 3$ rearranges to $2x + y = 4$ and $y = 5x - 3$
substitute out $y: 2x + (5x - 3) = 4$
answer $= (1, 2)$
3. $y = x + 4$ and $x^2 + y^2 = 58$
substitute out $y: x^2 + (x + 4)^2 = 58$
answer $= (7, -3)$ and $(3, 7)$
4. $y = x^2 + 5x - 1$ and $4x - y + 1 = 0$ rearranges to $y = x^2 + 5x - 1$ and $y = 4x + 1$
make $y = y: x^2 + 5x - 1 = 4x + 1$
answer $= (-2, -7)$ and $(1, 5)$
5. $(x + 2)^2 + y^2 = 400$ and $x - 3y + 8 = 0$
rearranges to $(x + 2)^2 + y^2 = 400$ and $x - 34y - 2$ (easier to $+ 4$ than $+ 3$)
substitute out $x: (34y - 2 + 2)^2 + y^2 = 400$ which is $(0.75y)^2 + y^2 = 400$
 $1.5625y^2 - 400 = 0$
answer $= (-14, -16)$ and $(10, 16)$
6. $(a - 3)(b + 1) = 1$ and $a - b = 4$ rearranges to $(a - 3)(b + 1) = 1$ and $a = 4 + b$
substitute out the $a: (4 + b - 3)(b + 1) = 1$ which is $(b + 1)(b + 1) = 1$
 $b^2 + 2b = 0$ or $b(b + 2) = 0$
answer $a = 2, b = -2$ and $a = 4, b = 0$
7. $(x + 1)^2 + (y + 2)^2 = 100$ and $y = \frac{x + 37}{-7}$ rearranges to circle and $x = 7y - 37$
substitute out $x: (7y - 37 + 1)^2 + (y + 2)^2 = 10$ which is
 $(7y - 30)^2 + (y + 2)^2 = 100$ which gives $49y^2 - 504y + 1296 + y^2 + 4y + 4 = 100$
 $50y^2 - 500y + 1200 = 0$
answer $= (-9, 4)$ and $(5, 6)$
8. Find k so that $y = 5 - x$ is a tangent to $y = x^2 + kx + 14$
 $y = y: 5 - x = x^2 + kx + 14$ which gives: $(k + 1)^2 - 4 \times 1 \times 9 = 0$
 $k^2 + 2k - 35 - 0$
answer $k = -7$ or 5
2013