L2 Simultaneous Equations Practice #3

Solve the following pairs of Simultaneous Equations

Warm Up

- 1. y = -4x + 1 and y = 5x 2
- 2. 3x + y + 5 = 0 and 2x + 3y = 6

Achieved

3.
$$y = \frac{6}{x-2}$$
 and $x - 6y - 2 = 0$

4.
$$(x + 3)^2 + y^2 = 10$$
 and $y = -2x + 1$

Merit

5.
$$x = (y - 3)^2 + 5$$
 and $y = \frac{1}{2}(x + 1)$

6.
$$y = \frac{-4}{x-3}$$
 and $y = \frac{-1}{4}x + \frac{3}{4}$

Excellence

7.
$$y = \frac{(x+4)^2 - 12}{12}$$
 and $y = \frac{4}{x}$

8. Find k so that y = k x + 2 is a tangent to $y = x^2 + 2x + 6$

Answers: L2 Simultaneous Equations Practice #3

1.
$$y = -4x + 1$$
 and $y = 5x - 2$
make $y = y$: $-4x + 1 = 5x - 2$
answer = $(\frac{1}{3}, \frac{-1}{3})$
2. $3x + y + 5 = 0$ and $2x + 3y = 6$ rearranges to $y - -3x - 5$ and $2x + 3y = 6$
substitute out y : $2x + 3(-3x - 5) = 6$
answer = $(-3, 4)$
3. $y = \frac{6}{x^2 - 2}$ and $x - 6y - 2 = 0$ rearranges to $y (x - 2) = 6$ and $x = 6y + 2$
substitute out x : $y (6y + 2 - 2) = 6$
 $y^2 = 1$, so $y = \pm 1$ (not just $y = 1$)
answer = $(-4, -1)$ and $(8, 1)$
4. $(x + 3)^2 + y^2 = 10$ and $y = -2x + 1$
substitute out y : $(x + 3)^2 + (-2x + 1)^2 = 10$ so $x^2 + 6x + 9 + 4x^2 - 4x + 1 = 10$
 $5x^2 + 2x = 0$ or $x(5x + 2) = 0$
answer = $(-0, 4, 1.8)$ and $(0, 1)$
5. $x = (y - 3)^2 + 5$ and $y = \frac{1}{2}(x + 1)$ rearranges to $x = (y - 3)^2 + 5$ and $x = 2y - 1$
make $x = x$: $(y - 3)^2 + 5 - 2y - 1$
 $y^2 - 8y + 15 = 0$
answer = $(5, 3)$ and $(9, 5)$
6. $y = \frac{-4}{x - 3}$ and $y = -\frac{1}{2}x + \frac{3}{4}$ rearranges to $y (x - 3) = -\frac{1}{4}$ and $y = \frac{1}{4}(-x + 3)$
substitute out y : $\frac{1}{4}(-x + 3)(x - 3) = -\frac{1}{4}$ and $y = \frac{1}{4}(-x + 3)$
substitute out y : $\frac{1}{4}(-x + 3)(x - 3) = -\frac{1}{4}$ and $y = \frac{1}{4}(-x + 3)$
 $x(x^2 + 8x + 16 - 12) = 48$ which gives $x^2 + 8x^2 + 4x - 48 = 0$
use graphics to solve
answer = $(2, 2), (-4, -1)$ and $(-6, -\frac{5}{4})$
8. Find k so that $y = \frac{1}{4}x + 2$ is a tangent to $y = \frac{x^2}{2} + 2x + 6$
make $y = y : \frac{1}{4}x + 2 = x^2 + 2x + 6$ which gives $x^2 + (2 - k)x + 4 = 0$
 $4x^2 - 4k - 12 = 0$
answer $k = -2$ or 6
 $k^2 - 4k - 12 = 0$