L2 Simultaneous Equations Practice #4

Solve the following pairs of Simultaneous Equations

Warm Up

- 1. a = 3b + 2 and a = b 6
- 2. a + b + 4 = 0 and 2a + b + 9 = 0

Achieved

3.
$$y = x(x - 4)$$
 and $y = 3x - 10$

4.
$$a = \frac{2}{b+1}$$
 and $2a = b+1$

Merit

- 5. $(x-1)^2 + y^2 = 25$ and 3x + 4y = 3
- 6. $x^2 + y^2 + xy = 25$ and x + 2y + 5 = 0

Excellence

- 7. Find k so that $y^2 + k = 2x$ does not cross y = 4x + 5
- 8. Find *k* so that x y + k = 0 is a tangent to $x^2 + y^2 = 1000$

Answers: L2 Simultaneous Equations Practice #4

1.
$$a = 3b + 2$$
 and $a = b - 6$
make $a = a : 3b + 2 = b - 6$
answer $a = -10, b = -4$
2. $a + b + 4 = 0$ and $2a + b + 9 = 0$ rearranges to $b = -a - 4$ and $b = -2a - 9$
make $-b = -b : a + 4 = 2a + 9$
answer $a = -5, b = 1$
3. $x + 3y = 5$ and $xy + y^2 = 3$ rearranges to $x = 5 - 3y$ and $xy + y^2 = 3$
substitute out $x : (5 - 3y)y + y^2 = 3$
answer $a = -1, b = 1$
3. $x + 3y = 5$ and $2a = b + 1$ rearrange to $a(b + 1) = 2$ and $b = 2a - 1$
substitute out $b : a(2a - 1 + 1) = 2$
answer $a = 1, b = 1$ or $a = -1, b = -3$
5. $(x - 1)^2 + y^2 = 25$ and $3x + 4y = 3$ is awkward because can't find $y = 0$ or $x = easily$
so sub in 4y by rearranging to $4^2(x - 1)^2 + (4y)^2 = 4^2 \times 25$ and $4y = 3 - 3x$
putting in $4y : 16(x - 1)^2 + (3 - 3x)^2 = 400$
 $16x^2 - 32x + 16 + 9 - 18x + 9x^2 = 400$ answer $= (5, -3)$ and $(-3, 3)$
6. $x^2 + y^2 + xy = 25$ and $x + 2y + 5 = 0$ rearranges to circle and $x = -2y - 5$
substitute out $x : (-2y - 5)^2 + y^2 + (-2y - 5)y = 25$ being careful with negatives
 $3y^2 + 15y = 0$ answer $= (5, -5)$ and $(-5, 0)$
7. Find k so that $y^2 + k = 2x$ does not cross $y = 4x + 5$
substitute out $y : (4x + 5)^2 + k = 2x$ which gives $: 16x^2 + 38x + (25 + k) = 0$
no intersection when $b^2 - 4ac < 0$ which gives: $(3b)^2 - 4 \times 16 \times (25 + k) < 0$
 $1444 - 1600 - 64k < 0$ answer $k < -2.4375$
8. $x - y + k = 0$ and $x^2 + y^2 = 1000$ rearrange to $y = x + k$ and to $x^2 + y^2 = 1000$
substitute out $y : x^3 + (x + k)^2 = 1000$ which gives: $(2k)^2 - 4 \times 2 \times (k^2 - 1000) = 0$
 $4k^2 - 8k^2 + 8000 = 0$ answer $k = \pm \sqrt{2000}$