
Basic Probability #8

 A deck of cards has 52 cards in four suits – clubs, spades, hearts, diamonds – from ace (1) to king:

If I shuffle a deck and draw a card at random, what is the probability I get:

- a) the two of hearts?
- b) a King?
- c) a three, four or five?

- 2. For the spinner to the right, what is the probability that:
 - a) a single spin gives a six?
 - b) a single spin doesn't give a one?
 - c) two spins both give a five?

3. The favourite ice-cream flavour is shown for some boys:

	Chocolate	Strawberry	Vanilla	Other
Number	12	7	4	10

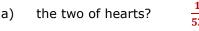
What is the probability a random boy:

- a) prefers chocolate ice-cream?
- b) whose favourite is strawberry if we know it isn't chocolate?
- 4. The colour and operating system of a class's phones is shown:

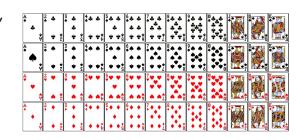
	Black	White	Other Colour	Total
iOS	2	3	0	
Android	10	1	5	
Total				

What is the probability a random phone from the class:

- a) is Android OS?
- b) is black?
- c) is Android, if it is black?
- 5. NZ number plates are three letters then three numbers. What is the probability that the next two plates you see end in the same two digits? (Ignore personalised plates)



Answers: Basic Probability #8


 A deck of cards has 52 cards in four suits – clubs, spades, hearts, diamonds – from ace (1) to king:

If I shuffle a deck and draw a card at random, what is the probability I get:

b) a King?
$$\frac{4}{52}$$
 or $\frac{1}{1}$

c) a three, four or five?
$$\frac{12}{52}$$
 or $\frac{3}{13}$

2. For the spinner to the right, what is the probability that:

$$\frac{1}{6}$$
 (or 16.67%)

$$\frac{5}{6}$$
 (or 83.33%)

$$\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$
 (or 2.78%)

(one event then another is always a multiplication)

3. The favourite ice-cream flavour is shown for some boys:

	Chocolate	Strawberry	Vanilla	Other
Number	12	7	4	10

What is the probability a random boy:

$$\frac{12}{33}$$
 (or 36.36%)

b) whose favourite is strawberry if we know it isn't chocolate? $\frac{7}{21}$ or $\frac{1}{3}$ (or 33.33%) because we ignore the 12 who prefer chocolate.

4. The colour and operating system of a class's phones is shown:

	Black	White	Other Colour	Total
iOS	2	3	0	5
Android	10	1	5	16
Total	12	4	5	21

What is the probability a random phone from the class:

a) is Android OS?

$$\frac{16}{21}$$
 (or 76.19%)

b) is black?

$$\frac{12}{21}$$
 (or 57.14%)

c) is Android, if it is black?

$$\frac{10}{12}$$
 or $\frac{5}{6}$ (because we ignore the 9 other colours)

5. What is the probability that the next two plates you see end in the same two digits? (Ignore personalised plates)

 $\frac{1}{100}$ or 1% (The first one will have two digits. Whatever they are, there is 1 in a 100 chance the next will be the same as the first ones)

