Extension Measurement Practice #1

1. Calculate the area and perimeter of the C shape. Include limits of accuracy in your calculations.

2. Calculate the area and perimeter of the double arrow shape.

3. Measure the oval below and **estimate** its area. Give an estimate of likely error.

4. A cuboid swimming pool is going to be made with a long side of 10 metres, a width of 6 metres and a depth of 1.8 metres. If the walls and floor are all to be 15 cm thick concrete, how much concrete will need to be poured in total?

Volume of concrete =

Answers: Extension Measurement Practice #1

	Area	Perimeter
1.	outer semicircle – inner semicircle	2 straight bits + outer and inner half circles
	$\frac{1}{2} \times \pi \times r_o^2 - \frac{1}{2} \times \pi \times r_i^2$	$4 + 4 + \frac{1}{2} \times \pi \times d_o + \frac{1}{2} \times \pi \times d_i$
	$\frac{1}{2} \times \pi \times 9^2 - \frac{1}{2} \times \pi \times 5^2 = 87.96 \text{ cm}^2$	4 + 4 + $\frac{1}{2}\pi \times 18$ + $\frac{1}{2}\pi \times 10$ = 51.98 cm
	Max A and P when outer circle is max: $r_o = r_i + Note$: if $r_o = 9.75$, then $r_i = 5.25 - it$ cannot be it	4 ± 0.5 and $r_i = \frac{1}{2}(10 \pm 0.5) = 5 \pm 0.25$ its minimum of 4.75 and still give maximum r_o .
	$V_2 \times \pi \times 9.75^2 - V_2 \times \pi \times 5.25^2 = 106.03 \text{ cm}^2$	$4.5 + 4.5 + \frac{1}{2}\pi \times 19.5 + \frac{1}{2}\pi \times 10.5 = 56.12 \text{ cm}$
	$V_2 \times \pi \times 8.25^2 - V_2 \times \pi \times 4.75^2 = 71.47 \text{ cm}^2$	$3.5 + 3.5 + \frac{1}{2}\pi \times 16.5 + \frac{1}{2}\pi \times 9.5 = 47.84$ cm
	71.5 < area < 106 cm ²	= 52.0 ± 4.2 cm

- 2. rectangle + 2 triangles $b \times h + 2 \times \frac{1}{2} \times b \times h$ $80 \times 40 + 2 \times \frac{1}{2} \times 70 \times \frac{1}{2}(120 - 80)$ $= 4600 \text{ cm}^2$ 2 horizontals + 4 verticals + 4 angle lengths $2 \times 80 + 4 \times 15 + 4 \times \sqrt{a^2 + b^2} \text{ (Pythagoras)}$ $2 \times 80 + 4 \times 15 + 4 \times \sqrt{20^2 + 35^2}$ = 381.2 cm
- 3. Long axis = 7 cm and short axis is 4 cm.

We could average a circle of the large diameter and a circle of the small diameter.

Area = $\frac{1}{2} \times (\pi \times r_{L}^{2} + \pi \times r_{S}^{2}) = \frac{1}{2} \times (\pi \times 3.5^{2} + \pi \times 2^{2}) = 25.5 \text{ cm}^{2}$

We could average a rectangle big enough to fit the circle and a diamond that fits inside.

Area = $\frac{1}{2} \times (7 \times 4 + \frac{1}{2} \times 7 \times 4) = 21 \text{ cm}^2$

We could draw a rectangle by eye that averages out what is left in and what is left out (as for light grey one shown)

Allowing for measurement errors as well, area = $23 \pm 3 \text{ cm}^2$

(The actual answer is $\pi \times r_L \times r_S = \pi \times 3.5 \times 2 = 22 \text{ cm}^2$)

corners if you take all the surface areas and multiply them by 15 cm thickness). Outside volume = $(10 + 2 \times 0.15) \times (6 + 2 \times 0.15) \times (1.8 + 1 \times 0.15) = 126.5 \text{ m}^2$ Inside volume = $10 \times 6 \times 1.8 = 108 \text{ m}^3$ volume

Easiest way is to take the inner volume away from outer (it avoids the duplication at the

Difference = 18.5 m³ of concrete

4.