Homework 20

Solve: Simplify Solve: Make *r* the subject: 1. $\sqrt{t^3} \times \sqrt{t^3}$ 8. $p^6 \times p^n = p^2$ 15. $A = \pi r^2$ 16. $\frac{1}{r} + 2 = \frac{3a}{7}$ 2. (3x + k)(3x - k)9. (x + 5)(4x + 3) = 017. $y = \frac{3a}{r+5}$ 3. $\sqrt{16t^6}$ 10. 25x - 15 = 018. $y = \frac{2r^3}{5}$ 11. $(\frac{10}{x})^3 = 27$ 4. $\sqrt{0.01t^3}$ 5. $\frac{1-x}{x-1}$ 12. $x^3 = 80x + 2x^2$ 19. $5x^3 = \sqrt{r}$ 6. $\frac{x^2 + 2x + 1}{x^2 - 1}$ 13. (2x + 5)(9 - x) = 020. $k = \sin(r)$ $7. \quad \frac{2x-x^2}{x-2}$ 14. Solve for *n* and *k*: 21. $k = 2r + \pi r$ (x + 2)(x + n) $= x^{2} + 7x + k$

Proofs

22. Prove that the sum of any four consecutive numbers added is even.

23. If $t_n = 4n + n^2$ show that the difference from the nth to next terms is 2n + 5

24. Show that *h* is never negative if $h = x^2 - 8x + 17$

Answers: Homework 20

Simplify		Sol	Solve:		Make r the subject:	
1.	$\sqrt{t^3} \times \sqrt{t^3}$	8.	$p^6 \times p^n = p^2$	15.	$A = \pi r^2$	
	$= t^{3}$		6 + n = 2		$^{A}/\pi = r^2$	
2.	(3x + k)(3x - k)		n = -4		$r = \sqrt{\frac{A}{\pi}}$	
	$= 9x^2 - 3kx + 3kx - k^2$	9.	(x + 5)(4x + 3) = 0		1 3 <i>a</i>	
	$= 9x^2 - k^2$		$x = -5 \text{ or } x = \frac{-3}{4}$	16.	$\frac{1}{r} + 2 = \frac{3a}{7}$	
3.	$\sqrt{16t^6}$	10.	25x - 15 = 0		$\frac{1}{r} = \frac{3a}{7} - \frac{14}{7} = \frac{3a - 14}{7}$	
	$= 4t^3$		5(5x-3)=0		$r = \frac{7}{3a - 14}$	
			5 = 0 or 5x - 3 = 0		7 = 3a - 14	
4.	$\sqrt{0.01t^3}$		$x = \frac{3}{5}$	17.	$y = \frac{3a}{r+5}$	
	$= 0.1t^{1.5}$	11.	$(\frac{10}{x})^3 = 27$		r + 5 y (r + 5) = 3a	
5.	$\frac{1-x}{x-1}$		$\frac{10}{x} = 3$		$r = \frac{3a}{v} - 5$	
			$x = \frac{10}{3}$, 	
	$= \frac{-(x-1)}{x-1}$	4.0		18.	$y = \frac{2r^3}{5}$	
	= -1	12.	$x^{3} = 80x + 2x^{2}$ $x^{3} - 2x^{2} - 80x = 0$		$\frac{5y}{2} = r^3$	
	$x^2 + 2x + 1$		$x^{2} - 2x^{2} - 80x = 0$ $x (x^{2} - 2x - 80) = 0$		Z	
6.	$\frac{x^2 + 2x + 1}{x^2 - 1}$		x (x + 8)(x - 10) = 0		$r = \sqrt[3]{\frac{5y}{2}}$	
	$= \frac{(x+1)(x+1)}{(x+1)(x-1)}$		x = 0, x = -8 or x = 10	19.	$5x^3 = \sqrt{r}$	
	(x+1)(x-1)	12	(2x + 5)(9 - x) = 0		$r = 25x^{6}$	
	$=\frac{x+1}{x-1}$	15.	(2x + 3)(9 - x) = 0 x = -2.5 or x = 9		$r = 25x^2$	
	<i>x</i> - 1			20.	$k = \sin(r)$	
7.	$\frac{2x-x^2}{x-2}$	14.	Solve for <i>n</i> and <i>k</i> :		$r = \sin^{-1}$ (k)	
			(x+2)(x+n)	24		
	$= \frac{-x(x-2)}{x-2}$		$= x^2 + 7x + k$	21.	$k = 2r + \pi r$	
	= -x		$2 + n = 7 \Rightarrow n = 5$		$k=r(2=\pi)$	
			$k = 2 \times n = 10$		$r = \frac{k}{2 + \pi}$	
Proofs $2 + \pi$					$2 + \pi$	

Proofs

22. Prove that the sum of any four consecutive numbers added is even. Let x be the first of our numbers. The sum is then x + x + 1 + x + 2 + x + 3 = 4x + 64x is even and 6 is even, and two evens added are even, so the sum is even.

23. If $t_n = 4n + n^2$ show that the difference from the nth to next terms is 2n + 5 $t_{n+1} - t_n = 4(n + 1) + (n + 1)^2 - (4n + n^2) = 4n + 4 + n^2 + 2n + 1 - 4n - n^2 = 2n + 5$

Show that *h* is never negative if $h = x^2 - 8x + 17 = (x - 4)^2 + 1$, so the min is at x = 4. 24. So the minimum value of $h = (4 - 4)^2 + 1 = 1$, and all other values will be larger. 2023