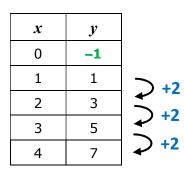
Year 11 Patterns Notes

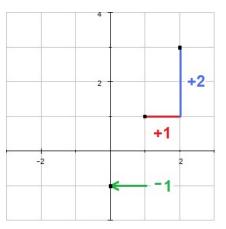
Linear Patterns

Linear patterns are ones where the difference between one term and the next is constant.

They are "linear" because if plotted they give a line.

They have equations of the form y = m x + c, just like lines.





The rule for this pattern is: y = 2x - 1.

- The pattern is increasing by two each time, so m = 2. Graphically, we get a gradient of 2.
- When x = 0, we have y = -1, so the *c* value is -1. 1

Graphically, we get a *y*-intercept of –

Generally the pattern given will not start with the zero term, but with the 1^{st} term (x = 1). In this case we calculate the zero term as our c. We never use the 1st term if it is not x = 0.

x	1	2	3	4	5
у	5	8	11	14	17

The rule for this pattern is: y = 3x + 2.

- The pattern is increasing by three each time, so m = 3.
- When x = 0, we would get y = 5 3 = 2, so the *c* value is 2. •

Patterns will not usually have the variables x and y, but instead variable letters which make sense in the context of the situation. Those variables should used, not x and y.

n	1	2	3	4	5
р	5	15	25	35	45

The rule for this pattern is: p = 10n - 5.

- The pattern is increasing by ten each time, so m = 10.
- When n = 0, we would get p = 5 10 = -5, so the *c* value is -5.

The most common mistake is not setting the constant *c* to what *y* is when the *x* value is 0.

Quadratic Patterns

Quadratic patterns are ones where the difference of the differences between terms is constant.

They have equations of the form $y = a x^2 + b x + c$.

If plotted they give a parabola, as quadratics do.

Method

- 1) We take the difference of the differences and **halve** it to find the *a* value.
- 2) We calculate the *c* value from the x = 0 value, as with lines.
- 3) After we take away the ax^2 and c parts, then what is left over is the bx term.

x	у	
0	3	+4
1	7	+2
2	13	$2 + 6 \rightarrow +2$
3	21	+8 +

The rule for this pattern is: $y = x^2 + 3x + 3$.

- The difference of the differences is 2, which we halve to get a = 1.
- When x = 0, we have y = 3, so the *c* value is 3.
- If we take $1x^2 + 3$ off, the remaining amounts go 0, 3, 6, 9 which is 3x, and so b = 3.

As with lines, generally the pattern will not start with the zero term, but with x = 1. In this case we calculate backwards to our x = 0 term to find the *c* value.

x	1	2	3	4	5
у	5	9	17	29	45

The rule for this pattern is: $y = 2x^2 - 2x + 5$.

- The differences are 4, 8, 12, 16, so the difference of differences is 4. Halving gives a = 2.
- The differences are 4, 8, 12, 16 so the difference to x = 0 is 0, so the *c* value is 5.
- If we take $2x^2 + 5$ off the remaining amounts go -2, -4, -6, -8 which is -2x, and so b = -2.

As with linear patterns we need to use the variable letters supplied.

n	1	2	3	4	5
р	100	100	99	97	94

The rule for this pattern is: $p = -0.5n^2 + 1.5n + 100$.

- The differences are 0, -1, -2, -3 so the difference of differences is -1. Halving gives $a = -\frac{1}{2}$.
- The differences are 0, -1, -2, -3 so the difference to x = 0 is 1, so the *c* value is 99.
- If we take $-0.5n^2 + 99$ off the remaining amounts go 1.5, 3, 4.5, 6 which is 1.5*n*, and b = 1.5 (you have to be very careful with the subtracting negatives in cases like these).

Exponential Patterns

Exponential patterns are ones where the terms are increased by a common multiplication.

They have equations of the form $y = c \times b^x$.

They are called exponential because the x is an exponent.

Method

- 1) The multiplication value between terms is the base, *b*.
- 2) We calculate the *c* value from the x = 0 value, although this time it is multiplied, not added.

x	у	
0	3	⊃ ×2
1	6	
2	12	२ ×2
3	24	→ ×2

The rule for this pattern is: $y = 3 \times 2^{x}$.

- Each term is twice the previous one, so b = 2.
- When x = 0, we have y = 3, so the *c* value is 3.

As with lines and quadratics, generally the zero term will not be given, but the first term given will be the one for x = 1. In this case we calculate backwards to our x = 0 term to find the *c* value.

x	1	2	3	4
у	2	10	50	250

The rule for this pattern is: $y = 0.4 \times 5^x$.

- Each term is five times the previous one, so b = 5.
- When x = 0, we have a fifth of the previous value, so $y = 2 \div 5$, and the *c* value is 0.4.

If the pattern is decreasing we don't change the process. However the base, *b*, will be less than one.

x	1	2	3	4
у	80	40	20	10

The rule for this pattern is: $y = 160 \times 0.5^{x}$.

- Each term is half the previous one, so b = 0.5.
- When x = 0, we have a twice the previous value, so $y = 80 \times 5$, and the *c* value is 160.

There are multiple ways of writing many exponential equations. In particular the answers are often given with changes to the *x* value, rather than a multiplication by a constant *c* out in front. For example, $y = 2 \times 2^x$ can be written as $y = 2^{x+1}$. There is no advantage to writing the answers with the shift to the *x* (and it makes for much harder equations to work with and solve). I suggest you stick with what is easiest for you.

Types of Questions

If the question asks for a "rule" or "relationship" then it is simply asking for the equation.

Do not forget to write as an **equation**, with the "y =" or equivalent.

If they leave a gap opposite a variable, they want an expression from the rule for that variable:

x	1	2	3	4	n
У	16	20	24	28	

The rule here is: y = 4x + 12. So for x = n then y = 4n + 12. And we put "4n + 12" in the space.

Generally the best way to solve a question is to find the relationship (equation) and then use that.

Numerical and guess and check methods often work, but you risk losing a grade in the marking if your method is considered to be at a lower level of thinking than using algebra.

a	1	2	3	4	 25
b	200	195	190	185	 ?

The rule for this pattern is: b = -5a + 205. (**not** + 200, because that's not the value at a = 0.)

So when a = 25, then $b = -5 \times 25 + 205 = 80$.

We can solve this problem without an equation, because we know that from a = 4 to a = 25 that the *b* value must drop by 25 - 4 = 21 lots of 5 less than 185. That gives $185 - 21 \times 5 = 80$.

i	ţ	1	2	3	4	 x
Ŀ	1	6	6.5	7	7.5	 80

The rule for this pattern is: A = 0.5t + 5.5.

So when A = 80, then 80 = 0.5t + 5.5. Solving that equation gives x = 149.

We could also solve this by knowing that from 7.5 to 80 is 72.5, which is 145 lots of 0.5. That means x = 4 + 145 = 149, even without being able to write the rule.

If a pattern is given as diagrams, then convert it to a numerical table first.

Example: to write a relationship for the number of dots to each place in the following pattern:

Convert to the table below, where d is the number of dots, and p the place in the pattern

р	1	2	3	4
d	1	5	9	13

and get the linear equation as usual: d = 4p - 3

Sequences are patterns given only as the "y" part.

For example a sequence might be written: 3, 7, 11, 14, 17 ...

Each number in the sequence is a term, and are called by their position. So the first term (t_1) above is 3, the second term (t_2) above is 7, etc

We deal with them like the equivalent patterns, except that formally the *y* value is replaced by t_n (for the *n*th term) and instead of *x* we use *n*. The rule for 3, 7, 11, 14, 17 ... is therefore $t_n = 4n - 1$.

Generally it pays to convert sequences to a table.

The sequence 3, 7, 13, 21, 31 ... converts to

п	1	2	3	4	5
tn	3	7	13	21	31

Where the differences are 4, 6, 8, 10 ..., increasing by 2, and the 0 term would be 3 - 2 = 1. And the rule is: $t_n = n^2 + n + 1$.

Graphing

Patterns and sequences are graphed as the equivalent line, parabola or exponential curve.

There are two significant differences however:

- 1) there are no values between terms so the *x* values, or equivalent, are **not** connected by lines. Instead we plot separated dots.
- 2) almost always the pattern makes not sense for x values that are negative and usually the x = 0 value also has no meaning. They should not be plotted in those situations. (Note even though we need to calculate what the x = 0 value would be for figuring out the *c* value in the equation, we do not plot it).

