

Y11 Harder Tables and Patterns Practice #1

- 1. Complete the gaps in the patterns given and write the rules:
 - a)

x	1	2	3	4	5	 20	rule
у	1	5	9	13			
b)							
x	1	2	3	4	5	 20	rule
k	100	95	90	85			
c)							
п	1	2	3	4	5	 20	rule
t_n	0	3	8	15			
d)							
п	1	2	3	4	5	 20	rule
t_n	3	8	15	24			

2. How many dots would the 100th in each pattern have?

Write the equation for the number of dots in terms of the position in the pattern.

a) $t_{100} = tn =$ b) $t_{100} = tn =$ c) $t_{100} = tn =$ d) $t_{100} = tn =$ t_{100} = tn = $t_{100} = tn =$ t_{100} = tn =
t_{100} = tn =

Answers: Y11 Harder Tables and Patterns Practice #1

- 1. Complete the gaps in the patterns given and write the rules:
 - a)

2.

~)	-			-				
x	1 +	<mark>4</mark> 2	3	4	5		20	rule
- 3 y	1	5	9	13	17		77	y = 4x - 3
b)								
x	1	2	3	4	5		20	rule
105 ····	100	95	90	85	80		5	k = -5x + 105
c)		+2	+2					
n	1 +	3 2 +	5	7 4	5		20	rule
t_n	0	3	8	15	24		399	$t_n = n^2 - 1$
d)		+2	+2					
п	1 +	5 2 +	7 3 +	<mark>9</mark> 4	5		20	rule
t_n	3	8	15	24	35		440	$t_n = (n + 1)^2 - 1$
								or $t_n = n^2 + 2n$
How many dots would the 100 th in each pattern have?								
					_			

Write the equation for the number of dots in terms of the position in the pattern.

a) even spacing of 4, with 2 more than 4 at the start $t_{100} = 402$ +4 +4 +4 $t_n = 4n + 2$

b) increasing spacing by $2 \Rightarrow n^2$ base, leaving 1, 2, 3, 4 etc $t_{100} = 10100$ +4 +6 +8 $t_n = n^2 + n$ or seeing each is a rectangle one higher than wide gives $t_n = n(n + 1)$

c) even spacing of 4, with 3 more than 4 at the start $t_{100} = 402$ +4 +4 +4 $t_n = 4n + 2$

d) increasing spacing by $1 \Rightarrow \frac{1}{2}n^2$ base, leaving 2.5, 4, 5.5, 7 etc $t_{100} = 5151$ +3 +4 +5 $t_n = 0.5n^2 + 1.5n + 1$ or seeing each as half a rectangle, one wider than high gives $t_n = \frac{1}{2}(n+1)(n+2)$