Harder Patterns #2 (Exponentials)

Write the equations for these patterns:

1

x	У
1	2
2	4
3	8
4	16
5	32

2	
n	p
1	21
2	63
3	189
4	567
5	1701

x	у
1	16
2	8
3	4
4	2
5	1

3

6

4

x	У
1	1
2	3
3	9
4	27
5	81

5	
а	b
1	12
2	36
3	108
4	324
5	972

x	у
1	1000
2	100
3	10
4	1
5	0.1

7

y		
-		

x	у
1	48
2	72
3	108
4	162
5	243

10. For the pattern: 1, 2, 4, 8, 16, 32, ...

What is the 20th term in the pattern?

- 11. For the pattern $k = 2.13^{n-112}$, when does the value of k first exceed 1?
- 12. For which term is the pattern: 4, 16, 64, 256 ... the same value as the pattern 512, 1024, 2048, 4096, 8182 ... ?

Harder Patterns #2 – Answers

 $y = 2^{x}$ 1 $p = 7 \times 3^n$ 2 or $y = 0.5^{x-5}$ $y = 2^{-x+5}$ (technically also $y = 32 \times 0.5^{x}$) 3 $v = 3^{x-1}$ (technically also $y = \frac{1}{3} \times 3^x$) 4 $b = 4 \times 3^{a}$ 5 $y = 10^{-x+4}$ or $y = 0.1^{x-4}$ 6 (technically also $y = 10\ 000 \times 0.1^x$) $y = 2^{x+1}$ 7 (technically also $y = 2 \times 2^x$) $b = 6 \times 5^a$ 8 $y = 32 \times 1.5^{x}$ 9 Formula is 2^{x-1} , so $2^{19} = 524288$ 10 $2.13^{n-112} = 1$ when n = 112, because $2.13^0 = 1$. 11 113th term will be the first over 1. When $4^{x} = 2^{x+8}$ 12 $(2^2)^x = 2^{x+8}$ $2^{2x} = 2^{x+8}$ 2x = x + 8

x = 8 so the 8th term for each

