L2 Algebra Revision #6

1. Solve:
$$\frac{4}{t+2} = \frac{3}{t+5}$$

2. Solve:
$$3^x = 2$$

3. Simplify:
$$\left(\frac{64}{\chi^{-2}}\right)^{\frac{2}{3}}$$

4. An ice cube is originally 350 grams.

It loses 4% of its weight every minute.

How long will it take it to reach 200 grams?

5. Simplify:
$$(2x^2 - 3x - 9)(x - 3)^{-1}$$

6. Solve:
$$\log_x(2187) = 3.5$$

7. Simplify:
$$\frac{5}{t-2} - \frac{3}{t+5}$$

8. Solve:
$$5x^2 - 33x < 14$$

Answers: L2 Algebra Revision #6

1. Solve:
$$\frac{4}{t+2} = \frac{3}{t+5}$$
 = $4(t+5) = 3(t+2)$
 $4t+20 = 3t+6$ $4t-3t=6-20$ $t=-14$

2. Solve
$$3^x = 2$$
 $\log(3^x) = \log(2)$ $x \log(3) = \log(2)$ $x = \log(2) \div \log(3)$ $x = 0.631$

3. Simplify:
$$\left(\frac{64}{x^{-2}}\right)^{\frac{2}{3}} =: (64x^2)^{\frac{2}{3}} = (64)^{\frac{2}{3}}(x^2)^{\frac{2}{3}} = \sqrt[3]{64^2} x^{2 \times \frac{2}{3}} = 16x^{\frac{4}{3}}$$

4.
$$W_{\text{end}} = W_{\text{start}} (1 + \text{change})^t$$
 $200 = 350 \times 0.96^t$ $\log (200) = \log (350 \times 0.96^t)$ $\log (200) = \log (350) + t \log (0.96)$ $t = \frac{\log(200) - \log(350)}{\log (0.96)} = 13.7 \text{ minutes}$ $0.7 \text{ mins} \times 60 = 42.5 \text{ seconds}$ No need to round in this context It will take 13 min 42½ sec

5. Simplify:
$$(2x^2 - 3x - 9)(x - 3)^{-1}$$

$$= \frac{2(x + 1.5)(x - 3)}{x - 3} = \frac{2(x + 1.5)(x - 3)}{x - 3} = 2(x + 1.5) = 2x + 3$$

6.
$$\log_x (2187) = 3.5$$
 If $y = b^x$ then $\log_b y = x$ $2187 = x^{3.5}$ $x = \sqrt[3.5]{2187}$ on calculator using $x\sqrt{}$ button, or $(2187)^{(217)}$ $x = 9$

7.
$$\frac{5}{t-2} - \frac{3}{t+5} = \frac{5(t+5)}{(t-2)(t+5)} + \frac{-3(t-2)}{(t+5)(t-2)} = \frac{5(t+5) - 3(t-2)}{(t-2)(t+5)}$$
$$= \frac{2t+31}{(t-2)(t+5)} \text{ or } \frac{2t+31}{t^2+3t-10}$$

8.
$$5x^2 - 33x < 14$$
 $5x^2 - 33x - 14 < 0$ this is inequation, so we get a range solving $5x^2 - 33x - 14 = 0$ gives $x = 7$ and -0.4 , so these are the limits of the range when $x = 0$, then $5x^2 - 33x < 14$ is true, so 0 is inside the range $-0.4 < x < 7$