L2 Algebra Revision #3

- 1. Solve: $\log_3(x) = 4$
- 2. Solve: $15x^2 + 36 = 48x$
- 3. Solve: $\frac{3t+1}{10} > \frac{1}{5}$
- 4. A polygon with *n* sides has $\frac{n}{2}(n-3)$ diagonals. How many sides does a polygon need to have 189 diagonals?

5. Simplify:
$$\frac{16x^2 + 8x - 15}{4x - 3}$$

6. Simplify fully: $\frac{k}{\sqrt{36k^4}}$

- 7. Simplify and write using positive indices: $(4x^{-3})^2$
- 8. Find all pairs of numbers which differ by 3 and whose squares differ by 75.

Answers: L2 Algebra Revision #3

1.
$$\log_3 (x) = 4$$
 If $y = b^x$ then $\log_b y = x$ $x = 3^4$ $x = 81$
2. $15x^2 + 36 = 48x$ $15x^2 - 48x + 36 = 0$ calculator $x = 1.2 \text{ or } 2$
3. $\frac{3t+1}{10} > \frac{1}{5}$ $5(3t+1) > 10$ $15t+5 > 10$ $t > \frac{1}{3}$ (0.333)
4. $189 = \frac{n}{2}(n-3)$ $378 = n(n-3)$ $n^2 - 3n - 378 = 0$ $n = 21 \text{ or } -18$
(negative sides are meaningless) The polygon has 21 sides
5. $\frac{16x^2 + 8x - 15}{4x - 3} = \frac{(4x + 5)(4x - 3)}{4x - 3} = \frac{(4x + 5)(4x - 3)}{4x - 3} = 4x + 5$
6. $\frac{k}{\sqrt{36k^4}} = \frac{k}{\sqrt{36}\sqrt{k^4}} = \frac{k}{6k^2} = \frac{1}{6k}$
7. $(4x^{-3})^2 = (4)^2 (x^{-3})^2 = 16 x^{-6} = \frac{16}{x^6}$
8. Our equations are: $a - b = 3$ and $a^2 - b^2 = 75$ rearranging the first: $a = 3 + b$
substituting to remove a : $(3 + b)^2 - b^2 = 75$
 $9 + 6b + b^2 - b^2 = 75$ $6b = 75 - 9$
 $b = 66 + 6 = 11$ solving using $a - b = 3$ gives $a = 14$

11 and 14, but –11 and –14 also work **11 and 14 or –11 and –14**

(4 and 8 are Merit)

