L2 Calculus Revision #5

- 1. Find the gradient of the graph of $y = 5 3x^2 + 4x$ at (4, -27)
- 2. A curve has f(6) = 5 and $f'(x) = x^2 3x + 2$. Find the equation of the curve
- 3. What is the value of the function given by $f(x) = 5x 2x^2$ when it has a gradient of -2?
- To the right is a gradient function.
 Sketch the matching function.

- 5. If the velocity of a car is given by $v = 10 + 8t 0.3t^2$, how far will the car go in the first 5 seconds? (*t* is in seconds, and distance is metres)
- 6. Find the equation of the tangent to $y = x^2 5x + 3$ at (3, -3).

Answers: L2 Calculus Revision #5

- 1. $y = 5 3x^2 + 4x$ so $\frac{dy}{dx} = -6x + 4$ at x = 4 $\frac{dy}{dx} = -6 \times 4 + 4 = -20$ Gradient at (4, -27) = -20
- 2. $f'(x) = x^2 3x + 2$ so $f(x) = \frac{1}{3}x^3 1.5x^2 + 2x + C$ so 5 = $\frac{1}{3} \times 6^3 - 1.5 \times 6^2 + 2 \times 6 + C$ So C = -25 told f(6) = 5Equation is $f(x) = \frac{1}{3}x^3 - 1.5x^2 + 2x - 25$
- 3 $f(x) = 5x 2x^2$ so f'(x) = 5 4xWant where gradient = -2so -2 = 5 - 4x x = 1.75 Put this back into original equation $f(x) = 5 \times 1.75 - 2 \times 1.75^2 = 2.625$ The function's value is 2.625
- 4. A negative parabola with the turning point at -1.5.

The width of the parabola is not important, so it can be fatter or skinnier.

The height of the parabola does not matter. It can cross the x-axis rather than staying below it (as shown here).

5. $v = 10 + 8t - 0.3t^2$

so distance = $10t + 4t^2 - 0.1t^3 + C$ Set C = 0, as it starts from 0 metres at t = 0

distance at 5 seconds = $10 \times 5 + 4 \times (5)^2 - 0.1 \times (5)^3$ = **137.5 metres**

6 $y = x^2 - 5x + 3$ so $\frac{dy}{dx} = 2x - 5$ At x = 3so $\frac{dy}{dx} = 2 \times 3 - 5 = 1$ At point (3, -3) using $y - y_1 = m(x - x_1)$ with gradient 1, through (3, -3) y - 3 = 1(x - 3)Equation of tangent is: y = x - 6

2013

Questions 5 and 6 are Merit