## L2 Calculus Practice #2

- 1. The gradient at any point on a curve is given by:  $\frac{dy}{dx} = \frac{3x^2}{4} + 1$ The curve passes through the point (4, 10). Find the equation of the curve.
- 2. To the right is a graph of a function, f(x). Clearly indicate the portions where  $f'(x) \ge 0$ .



- 3. Find the gradient at (4, 5) of the function  $f(x) = 0.25x^2 x + 5$ .
- 4. Where on the graph of  $y = 2x^2 + 5x + 9$  would the tangents to the curve have the form: y = 2x + c?
- 5. Find the coordinates of the turning points of the graph of  $f(x) = 2x^3 + 6.5x^2 5x + 4$ and determine their nature.
- 6. A ball starts at 0 seconds with a positive velocity, and slows until it stops after 6 seconds. The acceleration is given by: a = -0.4t (where *t* is time, in seconds) Give the equation for the velocity of the ball.



## Answers: L2 Calculus Practice #2



2013

6. a = -0.4t so  $v = -0.2t^2 + C$ Stops at t = 6, so  $0 = -0.2 \times 6^2 + C$ , which gives C = 7.2  $v = 7.2 - 0.2t^2$  (or  $v = -0.2t^2 + 7.2$ )

**Questions 5 and 6 are Merit**