L2 Calculus Revision #2

- 1. The gradient at any point on a curve is given by: $\frac{dy}{dx} = 2x^3 9$ The curve passes through the point (4, 10). Find the equation of the curve.
- To the right is a graph of a function, *f* (*x*).
 Sketch on the grid its gradient function.

- 3. Find the gradient at (5, 3) of the function $f(x) = 0.2x^2 2x + 8$.
- 4. The quantity of water in a tank is given by $L = 100 + 60t 2t^2$ (where L is in metres, and *t* is in hours). How fast is the level changing after 3 hours?
- 5. Find the coordinates of the turning points of the graph of $f(x) = 1\frac{2}{3}x^3 + 24x^2 20x + 1$ and determine their nature.
- 6. The distance in metres of a ball from a point is given by $s(t) = 8 4t + 4t^2$ (where *t* is time, in seconds)

Give the equation for the velocity of the ball, and show how far it is away from the point when it first comes to a stop.

Answers: L2 Calculus Revision #2

1. $\frac{dy}{dx} = 2x^3 - 9$ so $y = 0.5x^4 - 9x + C$ (4, 10) on line so $10 = 0.5 \times 4^4 - 9 \times 4 + C$ C = -82

Equation is $y = \frac{1}{2}x^4 - 9x - 82$

2. Drawn as dotted line

Any positive parabola provided that the intercepts are at the turning points of the cubic.

3. $f(x) = 0.2x^2 - 2x + 8$ so f'(x) = 0.4x - 2We want gradient at x = 5 $f'(5) = 0.4 \times 5 - 2 = 0$ Gradient = 0

4. $L = 100 + 60t - 2t^2$ L' = 60 - 4t At t = 3, $L' = 60 - 4 \times 3 = 48$

The level is changing at 48 metres per hour

- 5. $f(x) = 1\frac{2}{3}x^3 + 24x^2 20x + 1$ so $f'(x) = 5x^2 + 48x 20$ Turning points are at f'(x) = 0 so we solve $0 = 5x^2 + 48x - 20$ 0 = (5x - 2)(x + 10) or calculator gives solutions of x = 0.4 and x = -10 f(0.4) = -3.053 and $f(-10) = 934\frac{1}{3}$ and checking graph for their nature Maximum at $(-10, 934\frac{1}{3})$ Minimum at (0.4, -3.053)
- 6. $s(t) = 8 4t + 4t^2$ so v(t) = -4 + 8tStops when v = 0 when 0 = -4 + 8t so when t = 0.5 $s(0.5) = 8 - 4 \times 0.5 + 4 \times (0.5)^2 = 7$ It first stops **7 m** away from the point.

Questions 5 and 6 are Merit