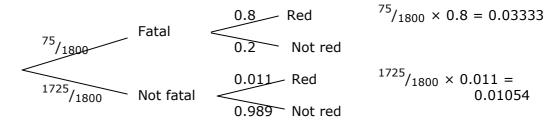

L2 Probability Revision #2

- 1. The spider population on a tropical island is surveyed. The scientists found 18 different species, of which 5 were capable of giving a fatal bite. Six of the species had red markings, of which 4 were capable of giving a fatal bite.
 - a) If a spider species is capable of giving a fatal bite, what is the probability that it has red markings?
 - b) Given that a spider species has red markings, what is the probability it has a potentially fatal bite?
 - c) What is the relative risk that a red-marked species has a fatal bite, compared to non-red-marked ones?
- 2. Each species is not evenly distributed, however, as some are much more numerous. The survey counted 1800 spiders in total. 75 were found to have fatal bites.
 - a) If 60% of the fatal bite spiders are over 4 cm long but only 4% of the non-fatal ones, what was the number over 4 cm long?

80% of fatal spiders had red markings. Only 1.1% of non-fatal spiders had red markings.

- b) What is the probability of a random spider having red markings?
- c) What is the probability of a random red marked spider having a fatal bite?
- 3. The mean weight of a mature male Common Red Back is 3.6 grams, with a standard deviation of 0.7 grams.
 - a) What is the probability a mature male Common Red Back weighs over 4 grams?
 - b) If 80 mature male Common Red Backs were caught, how many would you expect to be over 5 grams?
 - c) What is the interquartile range for the weights of mature male Common Red Backs?

2013


Answers: L2 Probability Revision #2

	Red	Not Red	
Fatal	4	1	5
Not-fatal	2	11	13
	6	12	18

- 1. The information given is in bold, which allows the rest to be calculated.
 - a) 4 out of the 5 fatal species are red = $\frac{4}{5}$ = 0.8
 - b) 4 out of the 6 red species are fatal = $\frac{4}{6}$ = 0.666
 - c) Risk for red marked = $\frac{4}{6}$ = 0.6666 Risk for non-red = $\frac{1}{12}$ = 0.8333 Relative risk for red marked species = $\frac{0.6666}{0.8333}$ = 8 times as high

2.

a) $75 \times 0.6 + 1725 \times 0.04 \times 1800 = 45 + 69 = 114$ spiders.

- b) 0.03333 + 0.01054 = **0.04387**
- c) $0.0333 \times 1800 = 60$ actual spiders in survey red-marked and fatal. $0.01054 \times 1800 = 19$ actual spiders in survey red-marked but not fatal 60 of the 79 fatal spiders are red marked. ${}^{60}/_{79} = 0.759$
- 3. a) Graphics normal distribution: Ncd: lower = -9999, upper = 4, σ = 0.7, μ = 3.6 P(w < 4) = 0.716
 - b) Graphics normal distribution: Ncd: lower = 5, upper = 9999, σ = 0.7, μ = 3.6 P(w > 5) = 0.02275. Expected number for 80 is 80 × 0.02275 = 1.8. Must round in this context = **2 spiders**
 - c) Graphics normal distribution: InvN: tail =middle, area = 0.5, σ = 0.7, μ = 3.6 IQR = **3.1278 to 4.0721 grams** For old calculators with only left tail: area = 0.25, and then area = 0.75