# L2 Simultaneous Equations Practice #5

Solve the following pairs of Simultaneous Equations

## Warm Up

- 1.  $y = \frac{1}{2}x + 3$  and y = 2x 3
- 2. 4x + 2y = 5 and 8x 5y = -0.5

## Achieved

3. 
$$b = 4a - 3$$
 and  $b = a^2$ 

4. 
$$y = \frac{1}{x-2}$$
 and  $y = \frac{1}{2}(x-3)$ 

### Merit

5.  $x^2 + y^2 + 2x - 7 = 0$  and y = x - 3

6. 
$$x^2 + \left(\frac{y}{4}\right)^2 = 10$$
 and  $y = 4x - 8$ 

#### Excellence

- 7. Find k so that y = k 2x is a tangent to  $y = \frac{1}{x}$
- 8. Find k so that y = 3x + k intersects  $x^2 + y^2 = 12$



## Answers: L2 Simultaneous Equations Practice #5

1. 
$$y = \frac{1}{2}x + 3$$
 and  $y = 2x - 3$   
make  $y = y : \frac{1}{2}x + 3 = 2x - 3$  answer = (4, 5)

2. 4x + 2y = 5 and 8x - 5y = -0.5 rearranges to y = 2.5 - 2x and 8x - 5y = -0.5

substitute out y : 8x - 5(2.5 - 2x) = -0.5 answer  $= (\frac{2}{3}, \frac{7}{6})$ 

3. b = 4a - 3 and  $b = a^2$ 

make  $b = b : 4a - 3 = a^2$  which rearranges to give  $a^2 - 4a + 3 = 0$ 

Quadratic, just *a* not the usual *x* answer a = 3, b = 9 and a = 1, b = 14.  $y = \frac{1}{x-2}$  and  $y = \frac{1}{2}(x-3)$  rearranges to give y(x-2) = 1 and x = 2y + 3make x = x : y(2y + 3 - 2) = 1 answer = (1, -1) and (4, 0.5)

5. 
$$x^2 + y^2 + 2x - 7 = 0$$
 and  $y = x - 3$ 

substitute out  $y : x^2 + (x - 3)^2 + 2x - 7 = 0$  which gives  $2x^2 - 4x + 2 = 0$ One solution, at x = 1, as it is a tangent answer = (1, -2)

- 6.  $x^{2} + (\frac{y}{4})^{2} = 10$  becomes  $x^{2} + \frac{y^{2}}{4^{2}} = 10$  multiply by 16 gives  $16x^{2} + y^{2} = 160$ substitute out  $y : 16x^{2} + (4x - 8)^{2} = 160$  answer = (3, 4) or (-1, -12)
- 7. y = k 2x is a tangent to  $y = \frac{1}{x}$  rearranges to y = k 2x and xy = 1substitute out y : x(k - 2x) = 1 rearranges to give  $2x^2 - kx + 1 = 0$ tangent when  $b^2 - 4ac \le 0$  which gives:  $(-k)^2 - 4 \times 2 \times 1 = 0$  $k^2 = 8$  answer  $k = \pm \sqrt{8}$
- 8. Find k so that y = 3x + k intersects  $x^2 + y^2 = 12$

 $y = y : x^{2} + (3x + k)^{2} = 12 \text{ which gives} : 10x^{2} + (6k)x + (k^{2} - 12) = 0$ intersection when  $b^{2} - 4ac \ge 0$  which gives:  $(6k)^{2} - 4 \times 10 \times (k^{2} - 12) \ge 0$  $4k^{2} \le 480$  answer  $-\sqrt{120} \le k \le \sqrt{120}$  (note, **not** <)

> MAN<sup>2013</sup> MATHS