Calculus Fractions Practice #3

Solve:

$$1. \qquad \frac{5}{x^2} + x = 8$$

$$2. \frac{\frac{x}{8}}{\frac{4}{x}} = 2$$

3.
$$\frac{3}{x-2} - 7 = \frac{5}{x-1}$$

$$4. \qquad \frac{\frac{5}{x-1}}{\frac{14}{x+1}} = 2$$

Write for y in terms of x, as a simplified single fraction:

$$5. \qquad \frac{4}{x/y} = 1$$

$$6. \qquad \frac{1}{xy} + \frac{1}{x^2y} = 5$$

7.
$$\frac{\frac{1}{y}}{x - \frac{1}{y}} + \frac{3}{x} = 2$$

$$8. \qquad \frac{xy}{x+y} = 4$$

Rearrange and simplify to give these to their simplest possible two line fractions (note, they become very simple fractions in most cases):

$$9. \qquad \frac{\frac{1}{y} + \frac{2}{x}}{\frac{1}{x} + \frac{2}{y}}$$

10.
$$\frac{5}{2 + \frac{x}{2 + x}}$$

11.
$$\frac{1}{x^3 - x} + \frac{x}{1 - x^2}$$

12.
$$\frac{1 - \frac{x^2 y^2}{z^2}}{1 + \frac{xy}{z}}$$

Answers: Calculus Fractions Practice #3

There are multiple ways of answering these questions, but usually one is much easier than the

1.
$$\frac{4}{x^2} + x = 3$$

$$4 + x^3 = 3x^2$$

$$0 = x^3 - 3x^2 + 4$$
 $x = 2 \text{ or } ^{-1}$

$$x = 2 \text{ or } ^{-1}$$

$$2. \frac{\frac{x}{8}}{\frac{4}{x}} = 2$$

$$\frac{x}{8} = 2 \times \frac{4}{x}$$

$$x^2 = 64$$

$$x = \pm 8$$

3.
$$\frac{3}{x-2} - 7 = \frac{5}{x-1}$$
 $\frac{3-7(x-2)}{x-2} = \frac{5}{x-1}$ $\frac{-7x+17}{x-2} = \frac{5}{x-1}$

$$\frac{3-7(x-2)}{x-2}=\frac{5}{x-1}$$

$$\frac{-7x+17}{x-2} = \frac{5}{x-1}$$

$$(7x + 17)(x - 1) = 5(x - 2)$$
 $0 = 7x^2 - 19x + 7$ $x = 2.275 \text{ or } 0.4396$

$$0 = 7x^2 - 19x + 7$$

$$x = 2.275 \text{ or } 0.4396$$

$$4. \frac{\frac{10}{x-1}}{\frac{7}{x+1}} = 2$$

$$\frac{10}{x-1}=\frac{14}{x+1}$$

4.
$$\frac{\frac{10}{x-1}}{\frac{7}{x-1}} = 2$$
 $\frac{10}{x-1} = \frac{14}{x+1}$ $10(x+1) = 14(x-1)$ $x = 6$

Flipping both sides of a fraction is often a quick way to simplify the process, but this only applies if you have an equation – do not apply it to an inequation (>, < etc).

$$5. \qquad \frac{4}{x/y} = 1$$

$$4 = \frac{x}{y}$$

$$4y = x$$

$$y = \frac{x}{4}$$

6.
$$\frac{1}{xy} - \frac{1}{x^2y} = 5$$
 $\frac{x-1}{x^2y} = 5$

$$\frac{x-1}{x^2v}=5$$

$$\frac{x-1}{x^2} = 5y \qquad \qquad y = \frac{x-1}{5x^2}$$

$$y = \frac{x-1}{5x^2}$$

7.
$$\frac{\frac{1}{y}}{x - \frac{1}{y}} + \frac{3}{x} = 2$$

$$\frac{1}{xy - 1} = \frac{2x - 3}{x}$$

$$xy - 1 = \frac{x}{2x - 3}$$

$$y = \frac{3x - 3}{x(2x - 3)}$$

$$\frac{1}{xy-1} = \frac{2x-3}{x}$$

$$xy - 1 = \frac{x}{2x - 3}$$

$$y = \frac{3x - 3}{x(2x - 3)}$$

$$8. \qquad \frac{xy}{x+y} = 4$$

$$xy = 4x + 4y$$

$$xy = 4x + 4y$$
 $y(x - 4) = 4x$ $y = \frac{4x}{x - 4}$

$$y = \frac{4x}{x-4}$$

$$9. \qquad \frac{\frac{1}{y} + \frac{2}{x}}{\frac{1}{x} + \frac{2}{y}}$$

(multiply by
$$\frac{xy}{xy}$$
)

$$=\frac{x+2y}{y+2x}$$

10.
$$\frac{5}{2 + \frac{x}{2 + x}}$$

$$=\frac{5(2+x)}{2(2+x)+\frac{x(2+x)}{2+x}} = \frac{10+x}{4+2x+x} = \frac{x+10}{3x+4}$$

$$=\frac{10+x}{4+2x+x}$$

$$=\frac{x+10}{3x+4}$$

It is very important to remember the relationship a - b = -(b - a):

11.
$$\frac{1}{x^3 - x} + \frac{x}{1 - x^2}$$

11.
$$\frac{1}{x^3 - x} + \frac{x}{1 - x^2}$$
 $= \frac{1}{x(x^2 - 1)} + \frac{-x^2}{x(x^2 - 1)}$ $= \frac{1 - x^2}{x(x^2 - 1)}$ $= \frac{-1}{x}$

$$=\frac{1-x^2}{x(x^2-1)}$$

$$=\frac{-1}{x}$$

12.
$$\frac{1 - \frac{x^2 y^2}{z^2}}{\frac{1}{z} + \frac{xy}{z^2}}$$

$$= \frac{z^2 - x^2 y^2}{z + xy}$$

$$= \frac{z^2 - x^2y^2}{z + xy} = \frac{(z + xy)(z - xy)}{z + xy} = z - xy$$

