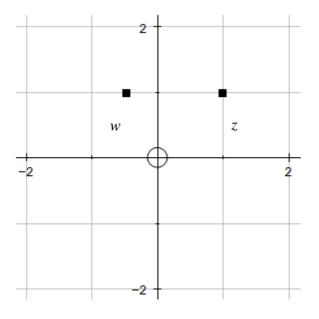
Calculus Polar Complex Number Practice #3

1. If the argument of
$$z = 3 + ki$$
 is 1, what is k?

2.
$$w = H \operatorname{cis}\left(\frac{8\pi}{5}\right)$$
 and $v = H \operatorname{cis}\left(\frac{5\pi}{6}\right)$. Calculate the exact value of wv in simplest form.

- 3. $w = n \operatorname{cis}\left(\frac{\pi}{5}\right)$ and $v = 2n \operatorname{cis}\left(\frac{\pi}{4}\right)$. Calculate the exact value of $\frac{w}{v^2}$.
- 4. What are *a* and *b* if $z = a \operatorname{cis} \left(\frac{\pi}{6}\right) = 5 + bi$?
- 5. Find z such that $z^3 + 8i = 0$
- 6. Write a general solution to $z^4 + n = 0$ where *n* is a positive real number.
- 7. If u = 8 + ki and v = -6 + 3i, find k if $arg(u.v) = \pi$.
- 8. The complex numbers w and z are shown. Plot the point $w + \overline{z}$ on the diagram.



Show your working graphically.

Answers: Calculus Rectangular Complex Number Practice #3

1. If the argument of z = 3 + ki is 1, what is k?

arg
$$z = 1 = \tan^{-1}(\frac{k}{3})$$
 $\Rightarrow k = \tan(1) \times 3 = 4.6722$

2. $w = H \operatorname{cis}\left(\frac{8\pi}{5}\right)$ and $v = H \operatorname{cis}\left(\frac{5\pi}{6}\right)$. Calculate the exact value of wv in simplest form.

$$w.v = (H \times H) \operatorname{cis} \left(\frac{8\pi}{5} + \frac{5\pi}{6}\right) = H^2 \operatorname{cis} \left(\frac{73\pi}{30}\right) = H^2 \operatorname{cis} \left(\frac{13\pi}{30}\right)$$

3. $w = n \operatorname{cis}\left(\frac{\pi}{5}\right)$ and $v = 2n \operatorname{cis}\left(\frac{\pi}{4}\right)$. Calculate the exact value of $\frac{w}{v^2}$.

$$\frac{w}{v^2} = (\frac{n}{(2n)^2}) \operatorname{cis} \left(\frac{\pi}{5} - 2 \times \frac{\pi}{4}\right) = \frac{1}{4n} \operatorname{cis} \left(\frac{-3\pi}{10}\right) \text{ or } \frac{17\pi}{10}$$

4. What are *a* and *b* if $z = a \operatorname{cis} \left(\frac{\pi}{6}\right) = 5 + bi$?

$$a \cos(\frac{\pi}{6}) + a \sin(\frac{\pi}{6}) i = 5 + bi$$
 so $5 = a \cos(\frac{\pi}{6}) \Rightarrow a = 5.7735$
and $b = a \sin(\frac{\pi}{6}) = 5.7735 \sin(\frac{\pi}{6}) \Rightarrow b = 2.887$

5. Find z such that $z^3 + i = 0$.

$$\Rightarrow z^{3} = -8i = 8 \operatorname{cis} \left(\frac{3\pi}{2}\right) = 8 \operatorname{cis} \left(\frac{-\pi}{2}\right) \qquad z = \sqrt[3]{8} \operatorname{cis} \left(\frac{3\pi}{2} \div 3\right) \text{ by De Moivre}$$
$$z_{1} = 2 \operatorname{cis} \left(\frac{\pi}{2}\right) = 2i \qquad z_{2} = 2 \operatorname{cis} \left(\frac{7\pi}{6}\right) \qquad z_{3} = 2 \operatorname{cis} \left(\frac{11\pi}{6}\right) = 2 \operatorname{cis} \left(\frac{-\pi}{6}\right)$$

6. Write a general solution to $z^4 + n = 0$ where *n* is a positive real number

$$z^4 = n \operatorname{cis}(\pi)$$
 \Rightarrow by de Moivre: $z = \sqrt[4]{n} \operatorname{cis}(\pi \div 4)$ is first solution
Other solutions are at multiples of $\frac{2\pi}{4}$ $\Rightarrow z = \sqrt[4]{n} \operatorname{cis}(\frac{\pi}{4} + \frac{x\pi}{2})$ $x \in \mathbb{Z}$

7. If
$$u = 8 + ki$$
 and $v = -6 + 3i$, find k if $arg(u.v) = \pi$.

$$u.v = (8 + ki)(-6 + 3i) = (-48 - 3k) + (24 - 6k)i$$

 $\arg(u.v) = \pi$, the result is a negative real, so $\operatorname{im}(u.v) = 0 \implies 24 - 6k = 0 \implies k = 4$

8.

The complex numbers w and z are shown. Plot the point $w + \overline{z}$ on the diagram.

 \bar{z} is *z* reflected in real (*x*) axis

To add \bar{z} is to go across 1, down 1

Applying that to *w* gives red dot.

