Y13 negative and fractional powers #1

Write without using negatives or fractional exponents:

- x^{-2} 1.
- $\chi^{\frac{-1}{2}}$ 2.
- 3.
- $\chi^{\frac{-2}{3}}$

Write in the form ax^n where a and n can be fractional and/or negative:

- 6. $\sqrt{4x^5}$
- $(2\sqrt{x})^3$

Simplify and write in the form x^n :

- $10. \quad \frac{\sqrt{x}}{x^3}$
- 11. $\frac{x}{\sqrt[3]{x}}$
- 12. $\frac{\sqrt[2]{x}}{\sqrt[3]{x}}$

Of the four terms which, if any, is different from the others?

- 13. x^{-3}
- $\left(\frac{1}{\sqrt[3]{x}}\right)^9$

- 14. $x^2\sqrt{x}$
- $x^{2.5}$

- 15. $(x^3)^2$ $(\sqrt{x})^{12}$
- $(\sqrt[3]{x})^{18}$

- 16. $\frac{x}{\sqrt[3]{x}}$
- $\sqrt[3]{\chi^2}$
- $x^{1.5}$

Answers: Y13 negative and fractional powers #1

Write without using negatives or fractional exponents:

1.
$$x^{-2} =$$

$$\frac{1}{x^2}$$

2.
$$x^{\frac{-1}{2}} =$$

$$\frac{1}{\sqrt{x}}$$

3.
$$x^{\frac{3}{2}} =$$

$$\sqrt{x^3}$$
 or, less usually, $(\sqrt{x})^3$

4.
$$x^{\frac{-2}{3}} =$$

$$\frac{1}{\sqrt[3]{x^2}}$$
 or, less usually, $\frac{1}{\left(\sqrt[3]{x}\right)^2}$

Write in the form ax^n where a and n can be fractional and/or negative:

$$5. \qquad \frac{2}{\sqrt[3]{x}} =$$

$$2x^{\frac{-1}{3}}$$

6.
$$\sqrt{4x^5} =$$

$$2x^{\frac{5}{2}}$$
 or $2x^{2.5}$

$$7. \qquad \frac{5}{\sqrt[4]{x}} =$$

$$5x^{-0.25}$$
 or $5x^{\frac{-1}{4}}$

8.
$$\left(2\sqrt{x}\right)^3 =$$

$$8x^{\frac{3}{2}}$$
 or $8x^{1.5}$

Simplify and write in the form x^n :

$$9. \qquad \frac{\frac{1}{x^2}}{\frac{1}{x^5}} =$$

$$x^3$$

$$10. \quad \frac{\sqrt{x}}{x^3} =$$

$$x^{\frac{-5}{2}}$$
 or $x^{-2.5}$

$$11. \quad \frac{x}{\sqrt[3]{x}} =$$

$$\chi^{\frac{2}{3}}$$

$$12. \quad \frac{\sqrt[2]{x}}{\sqrt[3]{x}} =$$

$$\chi^{\frac{1}{6}}$$

Of the four terms which, if any, is different from the others?

13.
$$x^{-3}$$
 $\frac{1}{x^3}$ $(\frac{1}{\sqrt[3]{x}})^9$

$$\frac{1}{x^3}$$

$$\left(\frac{1}{\sqrt[3]{x}}\right)^{6}$$

$$\frac{\frac{1}{\sqrt{x^7}}}{\frac{1}{\sqrt{x}}}$$

are all the same

14.
$$x^2\sqrt{x}$$

$$x^{2.5}$$

$$\frac{x^3}{\sqrt{x}}$$

14. $x^2\sqrt{x}$ $x^{2.5}$ $\frac{x^3}{\sqrt{x}}$ are the same but $(\sqrt[5]{x})^2 = x^{\frac{2}{5}} = x^{0.4}$ is different

15.
$$(x^3)^{-1}$$

$$\left(\sqrt{x}\right)^{12}$$

$$\left(\sqrt[3]{x}\right)^{18}$$

15. $(x^3)^2$ $(\sqrt{x})^{12}$ $\frac{1}{x^{-6}}$ $(\sqrt[3]{x})^{18}$ are all the same

16.
$$\frac{x}{\sqrt[3]{x}}$$

$$\sqrt[3]{x^2}$$

$$\frac{\frac{1}{\sqrt[3]{x}}}{\frac{1}{x}}$$

16. $\frac{x}{\sqrt[3]{x}}$ $\sqrt[3]{x^2}$ $\frac{\frac{1}{\sqrt[3]{x}}}{\frac{1}{x}}$ are all equal to $x^{\frac{2}{3}}$, so $x^{1.5}$ is the different one