Y13 negative and fractional powers #2

Write without using negatives or fractional exponents:

- $\chi^{\frac{1}{3}}$ 1.
- 2.
- $x^{\frac{5}{2}}$ 3.
- $8x^{-2}$

Write in the form ax^n where a and n can be fractional and/or negative:

- $\sqrt{16x^5}$ 5.
- 7. $4(\sqrt[3]{x})^5$
- 8. $\frac{7}{x\sqrt{x}}$

Simplify and write in the form x^n :

- 10. $x(x^{-2})^2$
- 12. $\frac{\sqrt[4]{x}}{x}$

Of the four terms which, if any, is different from the others?

- 13. $x^{1.5}$

- 14. $\sqrt[4]{x}$

- $x^{-0.5}$

- 16. $(\sqrt[3]{x})x$ $x^{\frac{4}{3}}$

- $\sqrt[3]{\chi^4}$

Answers: Y13 negative and fractional powers #2

Write without using negatives or fractional exponents:

1.
$$x^{\frac{1}{3}} =$$

$$\sqrt[3]{x}$$

2.
$$x^{\frac{-1}{4}} =$$

$$\frac{1}{\sqrt[4]{x}}$$

3.
$$x^{\frac{5}{2}} =$$

3.
$$x^{\frac{5}{2}} = \sqrt{x^5}$$
 or, less usually, $(\sqrt{x})^5$

4.
$$8x^{-2} =$$

$$\frac{8}{x^2}$$

Write in the form ax^n where a and n can be fractional and/or negative:

5.
$$\sqrt{16x^5} =$$

$$4x^{\frac{5}{2}}$$
 or $4x^{2.5}$

$$6. \qquad \frac{2}{\sqrt{x}} =$$

$$2x^{-0.5}$$
 or $2x^{\frac{-1}{2}}$

$$7. \qquad 4\left(\sqrt[3]{x}\right)^5 =$$

$$4x^{\frac{5}{3}}$$

$$8. \qquad \frac{7}{x\sqrt{x}} =$$

$$7x^{\frac{-3}{2}}$$
 or $7x^{-1.5}$

Simplify and write in the form x^n :

$$9. \qquad \frac{x}{\frac{1}{x^2}} \quad = \quad$$

$$\chi^3$$

10.
$$x(x^{-2})^2 =$$

$$x^{-3}$$

11.
$$\frac{x^2}{\sqrt{x}} = x^{\frac{3}{2}} \text{ or } x^{1.5}$$

$$x^{\frac{3}{2}}$$
 or $x^{1.5}$

$$12. \quad \frac{\sqrt[4]{x}}{x} =$$

$$\chi^{-0.75}$$
 or $\chi^{\frac{-3}{4}}$

Of the four terms which, if any, is different from the others?

13.
$$x^{1.5}$$

$$\frac{x^2}{\sqrt{x}}$$

$$\sqrt[2]{x^3}$$

$$\frac{x^2}{\sqrt{x}}$$
 $\sqrt[2]{x^3}$ are the same but $\frac{\frac{1}{x^2}}{\sqrt{x}} = x^{-1.5}$

14.
$$\sqrt[4]{x}$$

$$\frac{\sqrt{x}}{\sqrt[4]{x}}$$

$$\sqrt{\sqrt{x}}$$

14.
$$\sqrt[4]{x}$$
 $\sqrt{\frac{\sqrt{x}}{\sqrt[4]{x}}}$ are all = $x^{0.25}$, so $x^{0.4}$ is different

15.
$$\frac{1}{\sqrt{x}}$$

$$\frac{\sqrt{x}}{x}$$

$$x^{-0.5}$$

$$\left(\sqrt{x}\right)^{-1}$$

15.
$$\frac{1}{\sqrt{x}}$$
 $\frac{\sqrt{x}}{x}$ $x^{-0.5}$ $(\sqrt{x})^{-1}$ are all the same

16.
$$(\sqrt[3]{x})x \qquad x^{\frac{4}{3}} \qquad \frac{x^2}{\sqrt[3]{x^2}} \qquad \sqrt[3]{x^4}$$
 are all the same

$$\sqrt[3]{x^4}$$