Y13 negative and fractional powers #3

Write without using negatives or fractional exponents:

- 1. $x^{\frac{1}{5}}$
- 2. $x^{\frac{-1}{3}}$
- 3. $x^{\frac{4}{3}}$
- 4. $(3x)^{-2}$

Write in the form ax^n where a and n can be fractional and/or negative:

- 5. $\sqrt[3]{64x^2}$
- $6. \qquad \frac{1}{2\sqrt{x}}$
- 7. $4(\sqrt[3]{x})^2$
- 8. $\frac{3}{4\sqrt{x}}$

Simplify and write in the form x^n :

- 9. $\sqrt{x^7}$
- $10. \quad \frac{1}{(\sqrt[4]{x}) x^2}$
- 11. $\sqrt[2]{x} \times \sqrt[3]{x}$
- $12. \quad \frac{\sqrt[3]{x}}{x^2}$

Of the four terms which, if any, is different from the others?

- 13. $\frac{\frac{1}{x}}{\frac{1}{x^3}}$
- $\sqrt[2]{x^4}$
- $\left(\sqrt{x}\right)^4$
- $\frac{x^{2.5}}{\sqrt{x}}$

- 14. $\sqrt[8]{x}$
- $\frac{\sqrt[4]{x}}{2}$
- $\sqrt{\sqrt[4]{x}}$
- $x^{0.125}$

- 15. $\frac{1}{\sqrt[3]{x}}$
- $\frac{\sqrt[3]{x}}{\sqrt[3]{x^2}}$
- $\chi^{-0.3}$
- $\left(\sqrt[6]{x}\right)^{-2}$

- $16. \quad x^2 \sqrt{x^3}$
- $\frac{\sqrt{x}}{\frac{1}{x^3}}$
- $\frac{x^3}{\sqrt{x}}$
- $\left(\sqrt{x}\right)^7$

Answers: Y13 negative and fractional powers #3

Write without using negatives or fractional exponents:

1.
$$x^{\frac{1}{5}} =$$

$$\sqrt[5]{x}$$

2.
$$x^{\frac{-1}{3}} =$$

$$\frac{1}{\sqrt[3]{x}}$$

3.
$$x^{\frac{4}{3}} =$$

3.
$$x^{\frac{4}{3}} = \sqrt[3]{x^4}$$
 or, less usually, $(\sqrt[3]{x})^4$

4.
$$(3x)^{-2} =$$

$$\frac{1}{9x^2}$$

Write in the form ax^n where a and n can be fractional and/or negative:

5.
$$\sqrt[3]{64x^2} =$$

$$4x^{\frac{2}{3}}$$

$$6. \qquad \frac{1}{2\sqrt{x}} =$$

$$0.5x^{-0.5}$$
 or $1/2x^{\frac{-1}{2}}$ etc

$$7. \qquad 4\left(\sqrt[3]{x}\right)^2 =$$

$$4x^{\frac{2}{3}}$$

$$8. \qquad \frac{3}{\sqrt[4]{x}} =$$

$$3x^{\frac{-1}{4}}$$
 or $3x^{-0.25}$

Simplify and write in the form x^n :

9.
$$\sqrt{x^7} =$$

$$x^{\frac{7}{2}}$$
 or $x^{3.5}$

10.
$$\frac{1}{(\sqrt[4]{x}) x^2} = x^{\frac{-9}{4}} \text{ or } x^{-2.25}$$

$$x^{\frac{-9}{4}}$$
 or $x^{-2.25}$

$$11. \quad \sqrt[2]{x} \times \sqrt[3]{x} =$$

$$\chi^{\frac{5}{6}}$$

$$12. \quad \frac{\sqrt[3]{x}}{x^2} =$$

$$x^{\frac{-5}{3}}$$

Of the four terms which, if any, is different from the others?

13.
$$\frac{\frac{1}{x}}{\frac{1}{x^3}}$$

$$\sqrt[2]{x^4}$$

$$(\sqrt{x})^4$$

13.
$$\frac{\frac{1}{x}}{\frac{1}{x^2}}$$
 $\sqrt[2]{x^4}$ $(\sqrt{x})^4$ $\frac{x^{2.5}}{\sqrt{x}}$ are all the same = x^2

14.
$$\sqrt[8]{x}$$

$$\sqrt{\sqrt[4]{x}}$$

$$x^{0.125}$$

14.
$$\sqrt[8]{x}$$
 $\sqrt[4]{x}$ $x^{0.125}$ are the same but $\frac{\sqrt[4]{x}}{2} = 0.5x^{0.25}$ is different

15.
$$\frac{1}{\sqrt[3]{x}}$$

$$\frac{\sqrt[3]{x}}{\sqrt[3]{x^2}}$$

$$\left(\sqrt[6]{x}\right)^{-2}$$

15.
$$\frac{1}{\sqrt[3]{x}}$$
 $\frac{\sqrt[3]{x}}{\sqrt[3]{x^2}}$ $\left(\sqrt[6]{x}\right)^{-2}$ are the same = $x^{-\frac{1}{3}}$ but $x^{-0.3}$ is different

$$16. \quad x^2 \sqrt{x^3}$$

$$\frac{\sqrt{x}}{\frac{1}{x^3}}$$

$$\left(\sqrt{x}\right)^7$$

16.
$$x^2\sqrt{x^3}$$
 $\frac{\sqrt{x}}{\frac{1}{x^3}}$ $(\sqrt{x})^7$ are the same = $x^{3.5}$ but $\frac{x^3}{\sqrt{x}} = x^{2.5}$ is different