Calculus Quadratics Practice #1

Solve, by completing the square:

- 1. $4x^2 3x 1 = 0$
- 2. $5x^2 41x + 42 = 0$
- 3. $9x^2 + 9x 10 = 0$

Solve, by completing the square, to give solutions in exact form (a + \sqrt{b} for surds):

- 4. $x^2 16x 7 = 0$
- 5. $x^2 + 8x + 2 = 0$
- 6. $x^2 3x 8 = 0$

Solve, using the quadratic formula, to give solutions in exact form (a + \sqrt{b} for surds):

- 7. $x^2 5x + 3 = 0$
- 8. $4x^2 + x 5 = 0$
- 9. $5x^2 + 2x 1 = 0$

For what values of k do the following equations have real solutions?

- 10. $x^2 \frac{1}{3}x + k = 0$
- 11. $x^2 4kx k = 0$

Find the positive values of k which give whole number solutions to the equation:

12.
$$x^2 - 8x + k = 0$$

Answers: Quadratics Practice #1

Solve, by completing the square:

1.	$4x^2 - 3x - 1 = 0$	$(x - \frac{3}{8})^2 - (\frac{3}{8})^2 - 1 = 0$	$(x - \frac{3}{8}) = \pm \sqrt{\frac{25}{64}}$	<i>x</i> = 1 or ⁻ 0.25
2.	$5x^2 - 41x + 42 = 0$	$(x - 4.1)^2 - 4.1^2 + 8.4 = 0$	$(x - 4.1 = \pm \sqrt{8.81})$	<i>x</i> = 7 or 1.2
3.	$9x^2 + 9x - 10 = 0$	$(x - \frac{1}{2})^2 - (\frac{1}{2})^2 - \frac{10}{9} = 0$	$(x - \frac{1}{2}) = \pm \sqrt{\frac{49}{36}}$	$x = \frac{-5}{3}$ or $\frac{2}{3}$

Solve, by completing the square, to give solutions in exact form (a + \sqrt{b} for surds):

- 4. $x^2 16x 7 = 0$ $(x 8)^2 8^2 7 = 0$ $(x 8) = \pm \sqrt{71}$ $x = 8 \pm \sqrt{71}$ 5. $x^2 + 8x + 2 = 0$ $(x + 4)^2 - 4^2 + 2 = 0$ $(x + 4)^2 = \sqrt{14}$ $x = -4 \pm \sqrt{14}$
- 6. $x^2 3x 8 = 0$ $(x 1.5)^2 1.5^2 8 = 0$ $(x 1.5) = \sqrt{10.25}$ $x = 1.5 \pm \sqrt{10.25}$

Solve, using the quadratic formula, to give solutions in exact form (a + \sqrt{b} for surds):

- 7. $x^2 5x + 3 = 0$ $\frac{--5 \pm \sqrt{5^2 4 \times 1 \times 3}}{2 \times 1}$ 2.5 $\pm \frac{\sqrt{13}}{2}$ $x = 2.5 \pm \sqrt{3.25}$ 8. $4x^2 + x - 5 = 0$ $\frac{-1 \pm \sqrt{1^2 - 4 \times 4 \times -5}}{2 \times 4}$ $\frac{-1}{8} \pm \frac{\sqrt{81}}{8}$ $x = 1 \text{ or } \frac{-5}{4}$
- 9. $5x^2 + 2x 1 = 0$ $\frac{-2 \pm \sqrt{2^2 4 \times 5 \times -1}}{2 \times 5}$ $-0.2 \pm \frac{\sqrt{24}}{10}$ $x = -0.2 \pm \sqrt{0.24}$

For what values of k do the following equations have real solutions?

- 10. $x^2 \frac{1}{3}x + k = 0$ $(x \frac{1}{6})^2 (\frac{1}{6})^2 + k = 0$ $(x \frac{1}{6}) = \pm \sqrt{(\frac{1}{36} k)}$ $k \le \frac{1}{36}$ or $b^2 - 4ac \ge 0$ $(\frac{1}{3})^2 - 4 \times 1 \times k \ge 0$ $\frac{1}{9} - 4k \ge 0$ $k \le \frac{1}{36}$
- 11. $x^2 4kx k = 0$ $(x 2k)^2 4k^2 k = 0$ $(x 2k) = \pm \sqrt{(4k^2 + k)}$ $k \le \frac{-1}{4}$ or $k \ge 0$ or $b^2 - 4ac \ge 0$ $(^-4k)^2 - 4 \times 1 \times k \ge 0$ $16k^2 + 4k \ge 0$ $k \le \frac{-1}{4}$ or $k \ge 0$

Find the positive values of k which give whole number solutions to the equation:

12. $x^2 - 8x + k = 0$ $(x - 4)^2 - 4^2 + k = 0$ $(x - 4) = \pm \sqrt{16 - k}$ k = 0, 7, 12, 15, 16or $\frac{\sqrt{b^2 - 4ac}}{2a} \in \mathbb{N}$ $\frac{\sqrt{64 - 4k}}{2}$ is whole $\sqrt{16 - k}$ is whole k = 0, 7, 12, 15, 16

(the solutions 4 $\pm \sqrt{(16 - k)}$ are whole numbers when 16 – k > 0 and is a square) 2013