Calculus Quadratics Practice #2

Solve, by completing the square:

- 1. $10x^2 7x 12 = 0$
- 2. $6x^2 7x 20 = 0$
- 3. $100x^2 + 70x = 18$

Solve, by completing the square, to give solutions in exact form (a + \sqrt{b} for surds):

- 4. $x^2 6x + 1 = 0$
- 5. $x^2 + 7x + 2 = 0$
- 6. $x^2 x 8 = 0$

Solve, using the quadratic formula, to give solutions in exact form (a + \sqrt{b} for surds):

- 7. $x^2 + 10x + 3 = 0$
- 8. $3x^2 x 2 = 0$
- 9. $5x^2 7x 4 = 0$

For what values of k do the following equations have real solutions?

- 10. $2x^2 5x + k = 0$
- 11. $x^2 + kx + k = 0$

Find the values of k which do not give real solutions to the equation:

12.
$$x^2 + 2kx + 11 = 0$$

Answers: Quadratics Practice #2

Solve, by completing the square:

1.	$10x^2 - 7x - 12 = 0$	$(x - \frac{7}{20})^2 - (\frac{7}{20})^2 - \frac{12}{10} = 0$ $(x - \frac{7}{20}) = \pm \sqrt{\frac{529}{400}}$	$x = \frac{4}{5}$ or $\frac{3}{2}$
2.	$6x^2 - 7x - 20 = 0$	$(x - \frac{7}{12})^2 - (\frac{7}{12})^2 - \frac{20}{6} = 0 \ (x - \frac{7}{12}) = \pm \sqrt{\frac{529}{144}}$	$x = \frac{4}{3}$ or $\frac{5}{2}$
3.	$100x^2 + 70x = 18$	$(x - 0.35)^2 - 0.35^2 = 0.18$ $(x - 0.35) = \sqrt{30.25}$	<i>x</i> = 0.2 or ⁻ 0.9

Solve, by completing the square, to give solutions in exact form (a + \sqrt{b} for surds):

- 4. $x^2 6x + 1 = 0$ $(x 3)^2 3^2 + 1 = 0$ $(x 3) = \pm \sqrt{8}$ $x = 3 \pm \sqrt{8}$
- 5. $x^2 + 7x + 2 = 0$ $(x + 3.5)^2 3.5^2 + 2 = 0$ $(x + 3.5)^2 = \sqrt{10.25}$ $x = -3.5 \pm \sqrt{10.25}$
- 6. $x^2 x 8 = 0$ $(x 0.5)^2 0.5^2 8 = 0$ $(x 0.5) = \sqrt{8.25}$ $x = 0.5 \pm \sqrt{8.25}$

Solve, using the quadratic formula, to give solutions in exact form (a + \sqrt{b} for surds):

7. $x^{2} + 10x + 3 = 0$ $\frac{-10 \pm \sqrt{10^{2} - 4 \times 1 \times 3}}{2 \times 1}$ $^{-5} \pm \frac{\sqrt{88}}{2}$ $x = ^{-5} \pm \sqrt{22}$ 8. $3x^{2} - x - 2 = 0$ $\frac{--1 \pm \sqrt{1^{2} - 4 \times 3 \times -2}}{2 \times 3}$ $\frac{1}{6} \pm \frac{\sqrt{25}}{6}$ $x = 1 \text{ or } \frac{-2}{3}$ 9. $5x^{2} - 7x - 4 = 0$ $\frac{--7 \pm \sqrt{7^{2} - 4 \times 5 \times -4}}{2 \times 5}$ $0.7 \pm \frac{\sqrt{129}}{10}$ $x = 0.7 \pm \sqrt{1.29}$

For what values of k do the following equations have real solutions?

- 10. $2x^2 5x + k = 0$ $(x \frac{5}{4})^2 (\frac{5}{4})^2 + \frac{k}{2} = 0$ $(x \frac{5}{4}) = \pm \sqrt{(\frac{25}{16} \frac{k}{2})}$ $k \le \frac{25}{8}$ or $b^2 - 4ac \ge 0$ $5^2 - 4 \times 2 \times k \ge 0$ $25 - 8k \ge 0$ $k \le \frac{25}{8}$
- 11. $x^2 + kx + k = 0$ $(x + \frac{k}{2})^2 (\frac{k}{2})^2 + k = 0$ $(x + \frac{k}{2}) = \pm \sqrt{(\frac{k^2}{4} k)}$ $k \le 0 \text{ or } k \ge 4$ or $b^2 - 4ac \ge 0$ $k^2 - 4 \times 1 \times k \ge 0$ $k(k - 4) \ge 0$ $k \le 0 \text{ or } k \ge 4$

Find the values of k which do not give real solutions to the equation:

12. $x^2 + 2kx + 11 = 0$ $(x + k)^2 - k^2 + 11 = 0$ $(x + k) = \pm \sqrt{k^2 - 11}$ $\sqrt{11} < k < \sqrt{11}$ or $b^2 - 4ac < 0$ $(2k)^2 - 4 \times 1 \times 11 < 0$ $4k^2 - 44 < 0$ $\sqrt{11} < k < \sqrt{11}$

(if $k^2 < 11$ then square rooting yields $k < \sqrt{11}$ but a negative reverses the sign, so $k > \sqrt{11}$)