Y13 Extension – 3 × 3 Equations

- 1. If I have the equation 4x + 3y + z = 12. What does that look like as a physical representation in 3 dimensions?
- 2. Show the nature of the system of equations: 4x+3y-z = 11 3x-y+2z = 9 7x-11y+12z = 21

- 3. Find *k* so that the system of equations below is consistent: 9x+y+3z=-3 x+6y+2z=6 15x+24=ky
- 4. Write the solutions for a and b in the following system of equations in terms of c and find a solution.

 $2a + \frac{b}{2} + \frac{c}{12} = 2$ $a - 3b + \frac{c}{3} = 5$ -6a - 60b + 5c = 66

- 5. Find the equation of the parabola that passes through (2, 3.23), (3, 5.33) and (5, 8.33).
- 6. Find the integer solutions to the system of equations: 7x + 2z = 20 + y x + y + z = 10 7y + 4z = 40 + x

Answers: Y13 Extension – 3 × 3 Equations

1.

A plane, passing through (0, 0, 12), (0, 4, 0) and (3, 0, 0),

A plane, perpendicular to the vector $\begin{pmatrix} 4\\3\\1 \end{pmatrix}$ passing through (1, 1, 5)

Or similar explanations.

2.

Solving 4a + 3b = 7 and 3a + -1b = -11 gives us a = -2 and b = 5This gives us our multiples, so that eqn $3 = -2 \times eqn + 5 \times eqn = 2$

-2 × ① =	-8x + - 6y + 2z = -22
+ 5×②	15x - 5y + 10z = 45
+ −1 × ③	-7x + 11y - 12z = -21
	0 + 0 + 0 = 2

Since $0 \neq 2$, our system must be inconsistent.

3.

Rewrite as: ① 9x + y + 3z = -3 ② x + 6y + 2z = 6 ③ 15x - ky = -24Solving 9a + 1b = 15 and 3a + -2b = 0 gives us a = 2 and b = -3This gives us our multiples, so that eqn ③ $= 2 \times \text{eqn}$ ① $+ -3 \times \text{eqn}$ ② Using our multiples, $-k = 2 \times 1 + -3 \times 6 = -16$, so k = 16

4.

Multiply the equations out to get rid of fractions, giving us: ① 24a+6b+c=24 ② 3a-9b+c=15 ③ -6a-60b+5c=66to get rid of $b \ 3\times$ ① $+ 2\times$ ② $\Rightarrow 78a+5c=102 \Rightarrow$ ④ c=20.4-15.6ato get rid of $a \ -1\times$ ① $+ 8\times$ ② $\Rightarrow -78b+7c=96 \Rightarrow$ ⑤ $c=\frac{96}{7}+\frac{78}{7}b$ If we set a=0, then c=20.4 (from ④) so then b=0.6 (from ⑤) **A solution is (a=0, b=0.6, c=20.4)**

5.

A parabola is $a x^2 + b x + c = d$ which we can use to write equations 4a + 2b + c = 3.23, 9a + 3b + c = 5.33 and 25a + 5b + c = 8.33Which solves on the calculator to give: $y = 0.2x^2 + 3.1x + 2.17$

6.

Eqn (6) is the useful one, as it has the least terms. It limits us (for integer solutions) to situations where we are dealing with a multiple of 15 because otherwise $5x \neq 3y$.

We can generalise that to the situation where x = 3n and y = 5n for n any integer. We can then substitute this into eqn ② so that z = 10 - 3n - 5n.

The solutions follow the scheme: x = 3n, y = 5n, z = 10 - 8n $\forall n \in \mathbb{Z}$