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Bivariate Data Analysis (with answers filled in) 
 
This is adapted from University of Auckland Statistics Department material. The original can be 
found at  http://www.stat.auckland.ac.nz/~teachers/2003/regression.php 
 
 
 
 
 
 
 

 
 
The scatter plot is the basic tool used to investigate 
relationships between two quantitative variables. 
 
 

 
What do I look for in scatter plots?  
 
Trend 
 
 
 a linear trend or a non-linear trend? 
 
 straight line 
 
 
 
 
 a positive association or a negative association? 
 
 as one variable gets bigger  as one variable gets bigger 
 so does the other  the other gets smaller 
 
 
 
Scatter 

 
 

 a strong relationship or a weak relationship 
 
 little scatter  lots of scatter 
 
 
 
 
 constant scatter or non-constant scatter 
 
 roughly the same amount of  the scatter is shaped like  
 scatter across the plot  a fan or funnel 
 
 
 
Anything unusual 
 
 
 any outliers or any groupings 
 
  

Types of variables 

Quantitative 
measureable/countable 

Qualitative 
grouped 

Continuous 
measureable to any precision 

Discrete 
exact numbers 
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Exercise: 

What do I see in these scatter plots? Try to say as many (correct, useful) things as you can:  
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Average Age New Zealanders are First Married 

There appears to be a linear trend. 

There appears to be moderate constant scatter 
about the trend line. 

Negative association. 

No outliers or groupings visible. 

There appears to be a non-linear trend. 

There appears to be non-constant  

scatter about the trend line. 

Positive association. 

One possible outlier (Large GDP, low % Internet 
Users).

Two non-linear trends (male and female). 

Very little scatter about the trend lines 

Negative association until about 1970, then a positive 
association. 

Gap in the data collection (Second World War). 
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Exercise: 

Rank these relationships from weakest (1) to strongest (4): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
What features do you see? 

 

The bottom left plot has no discernable relationship: it could fit a vertical line as easily as a horizontal 
one. It is the weakest. 

The top left appears to have a weak positive relationship. 

The bottom right plot has a moderate negative relationship, but also a funnel shape: the relationship is 
much stronger at the top left than the bottom right. 

The top right plot has a strong positive relationship. 

 

 

     1                  2                 3               4 
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Correlation 

 Correlation measures the strength of the linear association between two quantitative variables 

 Get the correlation coefficient (r) from your calculator or computer 

 The correlation coefficient has no units 

 r has a value between –1 and +1: 

 

 

 

 

             r = –1      r = –0.7     r = –0.4     r = 0        r = 0.3      r = 0.8      r = 1 

 

 

 

 
What can go wrong?  

 Use correlation only if you have two quantitative variables 

There is an association between gender and weight but there isn’t a correlation between gender 
and weight! 

 The variables should be continuous (or nearly continuous) for an accurate r value. 

 Use correlation only if the relationship is linear 

 Beware of outliers! 

 Always plot the data before looking at the correlation 

   

 

      

 

 

Causation 

Two variables may be strongly associated (as measured by the correlation coefficient for linear 
associations) but may not have a cause and effect relationship existing between them.  The explanation 
maybe that both the variables are related to a third variable not being measured – a “lurking” or 
“confounding” variable.   
These variables are positively correlated: 

 Number of fire trucks vs amount of fire damage 
 Teacher’s salaries vs price of alcohol 
 Number of storks seen vs population of Oldenburg Germany over a 6 year period 
 Number of policemen vs number of crimes 

Only talk about causation if you have well designed and carefully carried out experiments. That way 
confounding variables can be excluded. 

 

If you do suspect that one variable is causing the other, then that variable should go along the x axis and 
is called the “explanatory” variable. If you suspect a causal link, but don’t know which way, then the one 
that you are controlling in your experiment, the “control” variable is placed along the x and the measured 
variable is the y. It other cases it makes no difference.  
  

Points fall 
exactly on a 
straight line 

Points fall 
exactly on a 
straight line 

 

No linear 
relationship 

(uncorrelated) 

r = 0 
 
No linear relationship, 
but  
there is a relationship!   

r = 0.9 
 
No linear relationship, 
but  
there is a relationship!   
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Exercise: 

Tick the plots where it would be OK to use a correlation coefficient to describe the strength of the 
relationship: 
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Exercise: 

What do I see in this scatter plot?  
 
 
  
 

 

 

 

 

 

 

 
What will happen to the correlation coefficient if the tallest Year 10 student is removed?  Tick your 
answer: 
 
(Remember the correlation coefficient answers the question: “For a linear relationship, how well do the data fall on a 
straight line?”) 
 

It will get smaller     It won’t change        It will get bigger 
 

 

 
Exercise: 

What do I see in this scatter plot?  
 

 
  
 

 

 

 

 

 

 

 
What will happen to the correlation coefficient if the elephant is removed?  
Tick your answer: 

 
It will get smaller    It won’t change         It will get bigger 
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Elephant 

Appears to be a linear trend, with a possible outlier 
(tall person with a small foot size.)  

Appears to be constant scatter. 

Positive association. 

 

Foot size will not cause height, but it seems likely 
that they have a common underlying cause. 

 
(Though not a lot smaller) 

Appears to be a strong linear trend. 

Outlier in x (the elephant).  

Appears to be constant scatter. 

Positive association. 



7 
 

Exercise: 

Using the information in the plot, can you       
suggest what needs to be done in a country to     
increase the life expectancy? Explain.  

 
 

 

 

 
 
 

 

 

 

 

 

 
     Using the information in this plot, can you 
     make another suggestion as to what needs to     
     be done in a country to increase life  
     expectancy? 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Can you suggest another variable that is linked to life expectancy and the availability of doctors (and   
televisions) which explains the association between the life expectancy and the availability of doctors  
(and televisions)?      
 

 
 

 
 
 
Data Sources 
 
http://www.niwa.cri.nz/edu/resources/climate    

http://www.cia.gov/cia/publications/factbook      

http://www.stats.govt.nz  

http://www.censusatschool.org.nz  

http://www.amstat.org/publications/jse/jse data archive.html 
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Doctors for a Sample of 40 Countries 

 

Life Expectancy and Availability of 
Televisions for a Sample of 40 Countries 

 

Perhaps more doctors in a country raises life 
expectancy. 

Alternatively there may be some criterion 
(probably wealth) that is strongly associated with 
life expectancy and the number of doctors. 

(Technically the graph would suggest that killing 
lots of people would also lower the ratio of people 
to doctor and so raise life expectancy, but that is 
not really a useful suggestion.) 

It looks like if you decrease the number of people 
per television (i.e., have more TVs per person), 
then the life expectancy will increase! 

More likely wealth is strongly associated with 
both, so that raising wealth increases life 
expectancy (and TV numbers too). 

Some measure of wealth of a country, e.g., average income per person or GDP. 

Note: to use correlation you need the wealth to be quantitative – that is given a 
number. 
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Regression  
 
(The theory on this page is not required for this unit, but helps explain what calculations are done.) 

 
Regression relationship =  trend  +  scatter 
 
Observed value = predicted value + prediction error 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Least Squares Regression Line 
 
Choose the line with smallest sum of squared prediction errors.  

 

 

 

 

 

 

 

 

 
• There is one and only one least squares regression line for every linear regression 

• The sum of the prediction errors is zero for the least squares line but it is also true for many 
other lines  

• The line includes the means of x and y i.e. the point ሺݔҧ ,   ഥሻ is on the least squares lineݕ 

• Calculator or computer gives the equation of the least squares line 

  

Minimise the sum of squared prediction errors 

Minimise ( )2∑ errors prediction  

Which line? 

8 

y = 5 + 2x 
 

data point 
(8, 25) 

25 

21 
prediction error 
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R-squared (R
2
) 

On a scatter plot Excel has options for displaying the equation of the fitted line and the value of R2. 

Four scatter plots with fitted lines are shown below. The equation of the fitted line and the value of R2 are 
given for each plot. Compare the values for R2 to the scatter seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
• R2 gives the fraction of the variability of the y values accounted for by the linear regression 

(considering the variability in the x values). 

• R2 is often expressed as a percentage. 

• If the assumptions (straightness of line) appear to be satisfied then R2 gives an overall measure of 
how successful the regression is in linearly relating y to x. 

• R2 lies from 0 to 1 (0% to 100%). 

• The smaller the scatter about the regression line the larger the value of R2. 

• Therefore the larger the value of R2 the greater the faith we have in any estimates using the 
equation of the regression line. 

• R2 is the square of the sample correlation coefficient, r. 

• For the above example, the linear regression accounts for 86.6% of the variability in the y values 
from the variability in the x values. 
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Exercise: 

List the plots from greatest R2 to least R2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Greatest to least R2:   
 
 
 
 

Source: Chance Encounters: A First Course in Data Analysis and Inference by Christopher J. 
Wild and George A. F. Seber 
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(Note: r is negative for D, but R2 is positive) 
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Exercise:  

for each scatter plot, use the value of R2 to write a sentence about the variability of the y-
values accounted for by the linear regression. 
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The linear regression accounts for 42.6% of the 
variability in the energy values from the 
variability in the salt content values. 

The linear regression accounts for 98.2% of the 
variability in the energy values from the 
variability in the percentage total fat values. 

The linear regression accounts for 1.7% of the 
variability in the energy values from the 
variability in the number of crackers per 100g. 

The linear regression accounts for 48.9% of the 
variability in the percentage total fat values 
from the variability in the salt content values. 
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Outliers in a regression context 
 
An outlier, in a regression context, is a point that is unusually far from the trend. 

The effect can be quite different for outliers in the y dimension compared to the x dimension.  

 

Outliers in y  
This is when the data point is a great distance above or below the trend line. An example: 

The following table shows the winning distances in the men’s long jump in the Olympic Games for 
years after the Second World War. 

 

Year Winner Distance Year Winner Distance 

1948 Willie Steele (USA) 7.82m 1980 Lutz Dombrowski (GDR) 8.54m 

1952 Jerome Biffle (USA) 7.57m 1984 Carl Lewis (USA) 8.54m 

1956 Gregory Bell (USA) 7.83m 1988 Carl Lewis (USA) 8.72m 

1960 Ralph Boston (USA) 8.12m 1992 Carl Lewis (USA) 8.67m 

1964 Lynn Davies (GBR) 8.07m 1996 Carl Lewis (USA) 8.50m 

1968 Bob Beamon (USA) 8.90m 2000 Ivan Pedroso (Cuba) 8.55m 

1972 Randy Williams (USA) 8.24m 2004 Dwight Phillips (USA) 8.59m 

1976 Arnie Robinson (USA) 8.35m    
Source: http://www.sporting-heroes/stats athletics/olympics trackandfield/trackfield.asp  
 

 
Exercise: 

Comment on the scatter plot. 

 
The data suggests a linear trend. (Alternative: The data suggests a trend with a slight curve.)  
Positive association. 

The data suggests constant scatter. 

There appears to be a reasonably strong relationship with one y-outlier. 
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Excel output for a linear regression on all 15 observations 

 

We estimate that for every 4-year increase in years (from one Olympic Games to the next) the 

winning distance increases by   , on average. 

Using this linear regression we predict that the winning distance in 2004 will be         . 
 

 
Excel output for a linear regression on 14 observations (with the 1968 observation 
removed) 
 

 

We estimate that for every 4-year increase in years (from one Olympic Games to the next) the 

winning distance increases by    on average. 

Using this linear regression we predict that the winning distance in 2004 will be             . 
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What effect did the 1968 observation have on the: 

a) fitted line?  

The fitted line was pulled towards the outlier by a small amount. 

b) predicted winning distance in 2004?  

Not much effect (a difference of only 1cm). 

c) value of r?  

When the 1968 observation was removed R2 increased from 0.59 to 0.82, so r went from 0.77 to 
0.91. 

 

So what does this mean, altogether? 

Removing the outlier does not affect our prediction much but does increase the firmness of our 
prediction, because the r value is much higher. 

 

 

 

 

 

 

 

 

 

 
We see how an outlier in y can affect the R2 value a lot although not necessarily the trend line itself. 

 

Such an outlier should be checked out to see if it is a mistake or an actual unusual observation. 

• If it is a mistake then it should either be corrected or removed. 

• If it is an actual unusual observation then try to understand why it is so different from the other 
observations. 

If it is an actual unusual observation (or we don’t know if it is a mistake or an actual observation) then 
carry out two linear regressions; one with the outlier included and one with the outlier excluded. 
Investigate the amount of influence the outlier has on the fitted line and discuss the differences. 
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Outliers in x  (or x-outliers) 
The effect of an outlier that is distant along the x axis can be quite different. An example: 

We often talk about a person’s “blood pressure” as though it is an inherent characteristic of that 
person. In fact, a person’s blood pressure is different each time you measure it. One thing it reacts 
to is stress. The following table gives two systolic blood pressure readings for each of 20 people 
sampled from those participating in a large study. The first was taken five minutes after they came 
in for the interview, and the second some time later. 

Note: The systolic phase of the heartbeat is when the heart contracts and drives the blood out. 

Source: Chance Encounters: A First Course in Data Analysis and Inference by Christopher J. Wild and 
George A. F. Seber (Exercise for Section 3.1.2., Question 3, p113). 

 

Observation 1 2 3 4 5 6 7 8 9 10 

1st reading 116 122 136 132 128 124 110 110 128 126 

2nd reading 114 120 134 126 128 118 112 102 126 124 

Observation 11 12 13 14 15 16 17 18 19 20 

1st reading 130 122 134 132 136 142 134 140 134 160 

2nd reading 128 124 122 130 126 130 128 136 134 160 

 
Exercise: 

Comment on the scatter plot. 
 

The data suggests a linear trend. 

Positive association. 

The data suggests constant scatter. 

There appears to be a reasonably strong relationship with one observation having a much 
higher first and second reading than the other observations. 
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Excel output for a linear regression on all 20 observations 
 

 

We estimate that for every 10-unit increase in the first blood pressure reading the second reading 

increases by                    , on average. 

For a person with a first reading of 140 units we predict that the second reading will be  

                           

 

 

Excel output for a linear regression on 19 observations (#20 removed) 
 

 

We estimate that for every 10-unit increase in the first blood pressure reading the second reading 

increases by                    , on average. 

For a person with a first reading of 140 units we predict that the second reading will be  

                             

 

Blood Pressure
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What effect did observation 20 have on: 

a) the fitted line?  

The fitted line was pulled towards observation 20, increasing the slope. 

b) the predicted second reading (for a first reading of 140)?  

When observation 20 is included the prediction is slightly higher.  

c) the value of R2?  

When observation 20 is removed R2 decreased from 0.87 to 0.78 
 

So what does this mean overall? 

Our original prediction was likely both wrong and underestimated the error. 
 

 

 
We see that an extreme x value can have the effect of artificially making the R2 value too high. 

The fitted line may say more about the x-outlier than about the overall relationship between the two 
variables. Such an outlier is sometimes called a high-leverage point. 

• If it is a mistake then it should either be corrected or removed. 

• If it is an actual unusual observation then try to understand why it is so different from the other 
observations. 

If a data set has an x-outlier which does not appear to be in error then carry out two linear regressions; 
one with the x-outlier included and one with the outlier excluded. Investigate the amount of influence the 
outlier has on the fitted line and discuss the differences. 
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Groupings 
 

In the 1930s Dr. Edgar Anderson collected data on 150 iris specimens. This data set was published 
in 1936 by R. A. Fisher, the well-known British statistician. 

 This is sourced from: http://lib.stat.cmu.edu/DASL/Stories/Fisher’sIrises.html  

 
Exercise: 

Comment on the scatter plots. 

 
The data suggests a linear trend. 

Positive association. 

The data suggests non-constant scatter. 

Moderate relationship. 

Appears to be two groupings. 
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The data were actually on fifty iris specimens from each of three species; Iris setosa, Iris versicolor and 
Iris verginica. The scatter plot below identifies the different species by using different plotting symbols (+ 
for setosa, • for versicolor, × for verginica). 

 
 

Let’s see what happens when we look at the groups separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Exercise: 

Comment. 

 
The equations of the 3 fitted lines are quite different. 

R2 is quite small in all 3 cases – partly as a result of smaller samples (50 compared to 150) and 
partly by the reduced range for the x-values. 
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Watch for different groupings in your data. 

• If there are groupings in your data that behave differently then consider fitting a different linear 

regression line for each grouping. 

 

 

 
Conclusions about R2 and outliers/groupings. 

• A large value of R2 does not mean the linear regression is appropriate. 

• An x-outlier or data that has groupings can make the value of R2 seem large when the linear 
regression is just not appropriate. 

• On the other hand, a low value of R2 may be caused by the presence of a single y-outlier and all 
other points have a reasonably strong linear relationship. 

• Groupings of different kinds of objects may give a value of R2 that does not hold for the individual 
types. 
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Prediction 
 

The purpose of a lot of regression analyses is to make predictions. 

The data in the scatter plot below were collected from a set of heart attack patients. The response 
variable is the creatine kinase concentration in the blood (units per litre) and the explanatory 
variable is the time (in hours) since the heart attack. 

Source: Chance Encounters: A First Course in Data Analysis and Inference by Christopher J. Wild and 
George A. F. Seber, p514. 

 
Exercise: 

Comment on the scatter plot. 

 
The data suggests a linear trend. 

Positive association. 

The data suggests constant scatter. 

Appears to be a strong relationship. 

 
Suppose that a patient had a heart attack 17 hours ago. Predict the creatine kinase concentration in the 

blood for this patient. 

 
The regression line would suggest about 1200 units/litre.  

 
In fact their creatine kinase concentration was 990 units/litre. Comment. 

 
This value is much lower than that predicted by the fitted line. The random error expected from 
a graph with that high a correlation would be very low, suggesting the model of a straight line is 
at fault (rather than this being a random fluctuation).  
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The complete data set is displayed in the scatter plot below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beware of extrapolating beyond the data. 

• A fitted line will often do a good job of summarising a relationship for the range of the observed x 
values. 

• Predicting y values for x values that lie beyond the observed x values is dangerous. The linear 
relationship may not be valid for those x values. 

 

The removal of an x outlier will mean that the range of observed x values is reduced. This should be 
discussed in the comparison between the two linear regressions (x outlier included and x outlier 
excluded). It is possible that the supposed “outlier” may actually indicate the start of a change in the 
pattern. 
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Non-Linearity 
 

Sometimes a non-linear model is more appropriate. An example: 

The data in the scatter plot below shows the progression of the fastest times for the men’s 
marathon since the Second World War. We may want to use this data to predict the fastest time at 
1 January 2010 (i.e. 64 years after 1 January 1946). 

Source: http://www.athletix.org/  

 
Exercise: 

Concerns: 

 
Non-linearity 

 
Possible solutions: 

 
Try fitting: 

1. an exponential function (y = aebx) 

2. a power function (y = axb) 

3. two separate straight lines: one for say 0–23 years and one for say 23–60 years 

4. a line for only the later years, say 23–60 years 

5. a quadratic (y = ax2 + bx + c) 

   

  

Men's Marathon Fastest Times

120

125

130

135

140

145

150

0 10 20 30 40 50 60

Years since 1 Jan 1946

Ti
m

e 
(m

in
ut

es
)



24 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise: 

Comments: 

Power and piecewise line both give a reasonable fit  

Exponential and a single line both give a bad fit 

Quadratic: time starts increasing (which is not sensible, and a typical problem to polynomial fit) 
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The data in the scatter plot below comes from a random sample of 60 models of new cars taken from all 
models on the market in New Zealand in May 2000. We want to use the engine size to predict the weight 
of a car. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise: 

Concerns: 

 

Non-linearity 

Increasing spread in y values as x increases, so that any prediction based on a line might be right 
for small engines but is unlikely to be correct for large ones. 

 
Possible solutions: 

 

Seems to be linear for engine sizes less than 2500cc. 

Very weak or no linear relationship for engine sizes over 2500cc. 

Solution: Fit a line for engine sizes less than 2500cc. 

 

 
 

 
Note: The solution need not be to exclude all linear models. It might be to restrict the range of values 
which the linear model is applied to. 
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