Practice for L3 Probability #2

Question One

This is a table containing information about students with the iPod Touchs. The 663 students at a local college were interviewed.

	Has an iPod Touch	Does not
Years 9-10	83	201
Years 11-13	126	253

- a) Three students in Years 9-10 were chosen at random for a further interview. Find the probability that exactly two of these have an iPod Touch.
- b) Is the event "Being a Year 11-13 student" and the event "Having an iPod Touch" independent? *Give statistical reasoning for your answer.*

Question Two

The students were also asked how many nights they did homework last week.

This is the probability distribution of their replies.

w	0	1	2	3	4	5	6	7
P(W = w)	0.12	0.09	0.21	0.22	0.16	0.08	0.10	0.02

- a) Calculate the mean number of nights students did homework in the last week.
- b) Calculate the variance of the number of nights the students did homework in the last week.

Question Three

Of the students who had an iPod Touch, 20% had the latest model and the rest had older models. Of those who had older models, 25% had a GPS app. For all the students with an iPod Touch, 30% had a GPS app.

What percentage of students who have the latest model iPod Touch had a GPS app?

Question Four

There are seven Year 9s and eight Year 10s on hockey squad.

On a particular day a team of 11 players is chosen, at random.

Find the probability that the team will contain 3 more Year 10s than Year 9s.

Answers: Practice for L3 Probability #2

1. a) A tree shows three possible ways this can happen (TTN, TNT and NTT)

 $P(TTN) = \frac{83}{284} \times \frac{82}{283} \times \frac{201}{282} = 0.06036$ Each branch is similar, so P(2 Touchs) = 3 × 0.06036 = 0.181

b) Let A = Year 11-13 student, Let B = Has iPod Touch

$$P(A) = \frac{379}{663} P(B) = \frac{209}{663}$$
 so $P(A).P(B) = 0.180$ and $P(A \cap B) = \frac{126}{663} = 0.190$

 $P(A).P(B) \neq P(A \cap B)$ so events A and B are **not** independent.

2	
Z	•
~	•

w	0	1	2	3	4	5	6	7
P(W=w)	0.12	0.09	0.21	0.22	0.16	0.08	0.10	0.02
E(W)	0	0.09	0.42	0.66	0.64	0.4	0.6	0.14
$E(W^2)$	0	0.09	0.84	1.98	2.56	2	3.6	0.98

a) E(W) = 2.95

b)
$$E(W^2) - E(X)^2 = 12.05 - 2.95^2 = Var(W) = 3.3475$$

3.

	Latest	Older	
GPS	10	20	30
No GPS	10	60	70
	20	80	100

So P(GPS | latest) = 10 ÷ 20 = 0.5 = 50%

(Or, the logic method: Let x be the % of with the latest iPod Touch who had a GPS app.

 $0.8 \times 0.25 + 0.2 x = 0.3$, so x = 0.5 = 50%)

4. Three more Y10s means 7 Y10s (out of 8) and 4 Y9s (out of 7).

$$\frac{{}^{8}C_{7} \times {}^{7}C_{4}}{{}^{15}C_{11}} = \frac{280}{1365} = 0.205$$

