Practice for L3 Probability #6

Question One

In a group of 40 students (24 boys and 16 girls), 15 of the boys and 12 of the girls study Physics.

- a) Two students are selected at random from the group. Find the probability that both these students are girls.
- b) A boy and a girl are selected at random from the group. Find the probability that only one of the two students studies Physics.
- c) Find the probability that a randomly selected student does not study Physics, given that he is a boy.
- d) Are the events "a randomly selected student is a boy" and "a randomly selected student studies Physics" independent? *You must justify your answer*.
- e) 60% of the boys who study Physics also study Chemistry. 75% of the girls who study Physics also study Chemistry.

Find the probability that a randomly selected student studies both Physics and Chemistry.

Question Two

A student sits three Physics external achievement standards.

- The first is worth four credits and has a historical pass rate of 60%.
- The second is worth three credits and has a historical pass rate of 80%.
- The third is worth three credits and has a historical pass rate of 75%.

Find the expected value of credits passed.

Question Three

A boat has a selection of twelve different flags.

- a) How many different variations can it have flying if it can fit three on the mast and their order is important?
- b) How many different variations can it have flying if it can fit three on the mast and their order is not important?

Question Four

At a tuck-shop 55% of the students buy a pie, 40% buy a filled roll and 10% buy both.

- a) What percentage buy neither a pie nor a filled roll?
- b) What is the probability that a person buying a pie will also buy a filled roll?

Answers: Practice for L3 Probability #6

1. a)
$$\frac{16}{40} \times \frac{15}{39} = 0.1538$$
 (or $\frac{{}^{16}C_2}{{}^{40}C_2}$)

b)		Girls doing Physics	15/25 × 12/16
	/ Boy doing Physics	Girl not doing Physics	15/25 × 4/16
	\langle	Girl doing Physics	10/25 × 12/16
	Boy not doing Physics	∠ Girl not doing Physics	10/25 × 4/16
	P(only one doing Physics)	= 15/25 × 4/16 + 10/25 ×	$12/16 = 0.45 \ (= \frac{9}{20})$

c) P(Phy' | Boy) =
$$\frac{9}{24}$$
 = 0.375 (Contingency table might help: of gender vs physics)

d) $P(Boy) \times P(Physics) = \frac{24}{40} \times \frac{27}{40} = 0.405 \neq P(Boy \cap Physics) = \frac{15}{40} = 0.375$ So they are **not** independent.

e) 15 boys do physics, so $0.6 \times 15 = 9$ boys do both physics and chemistry. 12 girls do physics, so $0.75 \times 12 = 9$ girls do both physics and chemistry. 18 out of 40 students study both, so P(study both) = $\frac{18}{40} = 0.45$

2. Expected value for independent events can be added:

$$E(A+B+C) = E(A)+E(B)+E(C)$$

$$E() = pass rate \times credits + fail rate \times 0$$

$$E(credits) = 4 \times 0.6 + 3 \times 0.8 + 3 \times 0.75 = 7.05$$

3. a)
$${}^{12}P_3 = 12 \times 11 \times 10 = 1,320$$

 ${}^{12}C_3 = \frac{12!}{3!9!} = 220$

4.

	Roll	No roll	
Pie	10	45	55
No pie	30	15	45
	40	60	100

2011

IVIAN MATL

a) 15% buy both.

b) P(Roll | Pie) =
$$\frac{10}{55}$$
 = 0.182